THE MORSE COMPLEX FOR A MORSE FUNCTION ON A
MANIFOLD WITH CORNERS

DAVID G.C. HANDRON

ABSTRACT. A Morse function f on a manifold with corners M allows the
characterization of the Morse data for a critical point by the Morse index.
In fact, a modified gradient flow allows a proof of the Morse theorems in a
manner similar to that of classical Morse theory. It follows that M is homotopy
equivalent to a CW-complex with one cell of dimension A for each essential
critical point of index A. The goal of this article is to determine the boundary
maps of this CW-complex, in the case where M is compact.

First, the boundary maps are defined in terms of the modified gradient
flow. This is complicated by the fact that globally, we have only a forward
flow ¢ : [0,00) Xx M — M. In the neighborhood of an essential critical point
p, however, we can define a flow which effectively reverses the flow ¢ in the
stratum containing p.

Then a transversality condition is imposed which insures that the attaching
map is non-degenerate in a neighborhood of each critical point. The degree
is then interpreted as a sum of trajectories connecting two critical points each
counted with a multiplicity determined by a choice of orientations on the tan-
gent spaces of the unstable manifold at each critical point.

1. INTRODUCTION

Goresky and MacPherson’s Stratified Morse Theory ([GM]) represented a great
step forward in extending the ideas of Morse, Thom and Smale to more general topo-
logical spaces. The complexities involved in dealing with stratified spaces prompted
Goresky and MacPherson comment on the nostalgia their Stratified Morse Theory
might inspire for the classical version of Morse theory, where the Morse data of a
critical point is determined by a single number, the Morse index.

In [Va] Vakhremeev proved the Morse theorems in the setting of manifolds with
corners, a setting which strikes a nice balance between the simplicity of classical
Morse theory on one hand, and the generality of Stratified Morse Theory on the
other. Manifolds with corners are a class of stratified space that arise naturally in
many applications, yet on these spaces the Morse data for an (essential) critical
point still is determined by a single number.

Others have studied Morse Theory in similar settings, (e.g. Hamm ([Hal], [Ha2]),
Siersma ([Si]) and Braess ([Br]), but none of these make use of a global flow on
manifolds with corners. The Morse theory for manifolds with corners developed in
[Han| utilizes a modified gradient flow to prove the theorems in a more classical
manner (e.g. as in [Mi]). This allows, as we shall see, the construction of a Morse
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complex with boundary maps determined by the trajectories connecting (essential)
critical points.

1.1. Setup and Definitions. Let M be a compact n-dimensional manifold with
corners endowed with a Riemannian metric. Then each p € M has a neighborhood
diffeomorphic to an open subset of [0, c0)™.

We say that a diffeomorphism x : U — [0,00)7 x R"~7 is a standard coordinate
chart at p if U is an open subset containing p, x(p) = (0,...,0), and if a%i €
[0,00)7 x {0} and % € {0} x R*~J, then Bizi is orthogonal to a%j.

The number j = j(p) for a standard coordinate chart at p is uniquely determined
by p. M can be thought of as a stratified space. Each connected component of
Ei={pe M:jp)=j}is astratum of dimension j.

We say that f : M — R is a Morse function on M if the following hold:

(1) If K is a stratum of M, and p € K is a critical point of f|x : K — R, then
either
(a) p is a non-degenerate critical point of f|x : K — R, i.e. the Hessian

has non-zero determinant, or

(b) the vector —V f(p) points into M.

(2) If p € K is a critical point, then for any stratum L # K with p in the
closure of L, dfy, is not identically zero on T,,L.

(3) For any standard coordinate chart x, whenever —V f(p) is tangent to a
stratum K C OM with a%i 1 K and %(p) = 0, the directional derivative

of g—i in the direction —V f(p) is not zero.

We say that p is an essential critical point of f if f satisfies condition (1a) at p,
but not condition (1b). The indez of an essential critical point p in a stratum K is
equal to its index (in the classical sense) as a critical point of f|x.

Suppose f : M — R is a Morse function such that f~!(—oo,r] is compact for
each r € R. It is shown in [Han] that M is homotopy equivalent to a CW-complex
with one cell of dimension A for each essential critical point of index .

Let G be the modified gradient vector field of f on M, defined by projecting the
vector —V f(p) onto the maximal stratum such that the resulting vector does not
point outward from M. It is shown in [Han] that G induces a flow ¢ : [0,00) x M —
M and that the stationary points of this flow are exactly the essential critical points
of f.

We can define the stable and unstable sets of an essential critical point p by

S(p) = {q € M: lim o(t,q) =p},
and

U(p) = {q €M : g}, C M such that ¢(k,q) = g and klim g = p} .
—00

1.2. Results Proved. Our goal is to describe the boundary maps of the CW-
complex generated by f in terms of the trajectories of the flow . If we assume a
Smale-like condition (Definition 1) for the function f then the number of trajectories
T connecting critical points ps and p; (where the index of ps is one greater than
the index of p;). Furthermore, if M is orientable, then we can associate to T a sign
41 or —1. This sign is determined by comparing, via the flow ¢, orientations on
U(p1) and U(p2).
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If P; and P, are the cells in the CW-complex corresponding to the critical points
p1 and po, then the degree of the attaching map of P, along P; is the sum of the
signs of the trajectories from py to p;.

Now suppose M is an oriented manifold with corners and f : M — R is a Morse
function satisfying the conditions of Definition 1. Let C;(f) be the set of essential
critical points of f with index j, and V; the free Abelian group of formal Z-linear
combinations of the elements of C;(f). We can define 9; : V; — V;_ by setting

0;(p) = Y  degree(p,q)q
q€C;-1(f)

for each p € C;(f), and extending linearly to all of V. Finally, we can state the

Main Theorem. (Theorem 11) The free Abelian groups V; and maps 0; form
a chain complex whose homology groups are identical to the Z-homology groups of
the topological space M.

2. THE ATTACHING MAP OF A CELL IN THE MORSE COMPLEX

If p is an essential critical point with index A\, we can choose a coordinate chart
such that
f(x) :C_fﬁ_"'_-'L'i‘i‘mi-u+"'+$721_j+$n—j+1+"'+$n

We can define, for ¢ sufficiently small, a region H with the property that M._.UH
is homotopy equivalent to both M,,. and M._. Ue*. To do so we first choose a
smooth function p : R — R so that x(0) > €, p(r) =0 for r > 2¢, and —1 < g’/ <O0.
Then we set

F(x)=f(x)—p@d 4+l +2@3 1+ +20 ) +2@n_jy1 + - +2n))

Finally, we define H = F~1(—o00,¢c —¢] — M.—..

Let p; and ps be essential critical points with indices A; and Ag respectively. In
addition, suppose that f(p1) = ¢; and f(p2) = ca, where ¢; < co, and that there
are no other critical points in f~1([cy,c2]). Then we can choose ¢ sufficiently small
that the set

Us(pZ) = U(Pz) - M02—6

is homeomorphic to e*?, a cell with dimension \s.
We can then think of M., _. U U(p2) as M.,_. with a Aa-cell attached via the
inclusion map

o : 90U (p2) = M., _..

Now, the flow ¢ gives rise to a family of homotopy equivalences which can be
thought of in two ways:

(1) o(t,-) gives a deformation retraction of M., . U U(p2) onto
o(t, Me, - UU(p2)) = @(t, Me, ) UU (p2).

(2) @(t,-) gives a deformation retraction of M., . U, e*? onto

@(t, Mey—c) Up(t,-)oo e,
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In the first case, we allow the whole space to flow by ¢. The equality follows
from the ¢-invariance of U(py). In the second case, we simply allow the image of
the attaching map oy to flow by ¢. (c.f. Lemma 3.7 in [Mi].) The distinction is
important, since although U, (p) is homeomorphic to e*2, the unstable set U(ps)
may not be. This is a notable difference from the classical theory.

Now we prove the following

Lemma 1. Let p; and ps be two essential critical points of f such that f(p1) = ci,
f(p2) = c2, c1 < c2 and that there are no other critical points in f~1([c1 — ¢, c2]).
Then

M., UU(pa) ¥ M., UH UU(p2)

Proof. For each ¢ € M,,_., define
t‘(ll) =inf {t e R" : p(t,q) € M,_. UH}

The function g — tfll) is continuous, and t,(ll) is finite for each ¢ € M,,_.. Moreover,

since M,,_. is compact, T3 = sup{t.gl) 1q € M,,_.} is finite.
Now we can define the desired homotopy @2 : [0,1] X M., UU(p2) = Mg, U
HUU(p2) by
o(Ti1s,q) Tis < t,(ll)
ot q) Tis > tg)

(1)2(3,(1) = {

q.e.d.

There is no reason, in principle, that the € used to define U, (p2) must be the
same as the € in Lemma 1. They can be chosen to be the same, however, and this
serves to simplify the notation in the remainder of our argument.

Now lets view this in terms of attaching maps. We have the inclusion map
02 : OU.(p2) = M,,_.. Then we can use the homotopy ®; to define an attaching
map

‘1’2(1, ) 009 : 6U€(p2) — Mcl—s UH.
Now, identifying U, (p2) with e*2, we find that

Mcz—s @] U(pg) ~ Mcl_s UH Uq>2(1,.)00-2 6)‘2

Note that the homotopy ®2 preserves the trajectories of ¢. This will be an
important fact when we describe the degree of the attaching maps in Section 3.

Lemma 2. There is an attaching map X : 0e*2 — M,,_. UU(p1) such that
Mcl_s U U(pl) Us, e ~ MC1—€ UHU U(pg).

Proof. Choose a coordinate system near p; in which

f(x) :f(pl)_wf _.._zi+$§+1+..+xi_]+wn7]+l+..+mn
Then the stable set of p; corresponds to {(z1,...,%n)|z1 = -+ = zx = 0}. The
unstable set of p; corresponds to {(z1,...,Zn)|Trr1 =+ =z, = 0}

Consider the function g(x) = f(p1) +a3,,+--+25_;+&n ji1+- - +2. This
function is constant on the unstable set, with a value of f(p1). For ¢ outside the
stable set, f(q) > f(p1). Moreover, the function g agrees with f on the stable set.
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Let X denote the modified (negative) gradient vector field of the function g.
Then X(¢q) = G(q) for ¢ € S(p1), and X(q) = 0 for ¢ € U(p1). The flow of X is
directed toward U(p1). Let ¢ denote the flow of the vector field “§—”, and note that
1) preserves the trajectories that have p; as a lower endpoint.

For each ¢ in H, we can set t,g2) = inf{t € R : ¢(t,q) € M., UU(p1)}, and
for ¢ € M., _. set t<(12) = 0. Then define T, = sup{t((f) : ¢ € H}. Then the map
Uy:[0,1] x M, . UH — M., _.UU(p1) given by

$(Tas,q) Tos <ty
(D, q) Tos >t

‘IIZ(S’Q) = {

gives a homotopy equivalence ¥o(1,-) : M;, . UH — M., _.UU(p1). Consequently,

M. . UHUU®p2) >~ Mo UH Usgy(1, )00, €

~ Mg, UU(p1) Ugy(1,)05(1,)o0s €2

The first homotopy equivalence follows from Lemma 1.
Finally, we define ¥y = Uy(1,-) o ®5(1,-) 0 9. q.e.d.

It is important to note that, although the homotopy W5 does not preserve the
trajectories of ¢, it does preserve those trajectories that lie within the stable set
S(p2). This will be important to us in determining the degree of the attaching map
3.

The homotopy equivalence of M with the desired CW-complex can be defined
inductively. If pq,po, ..., pm are the essential critical points of M, each with index
A; and labeled such that f(p1) < f(p2) < ..., then ¢; = f(p1) must be an absolute
minimum, and M., +. is homotopy equivalent to the 0-cell, U.(p1). In fact the map
Wy(1,-) is a homotopy equivalence.

Now, as in Lemma 1 and Lemma 2, we consider the inclusion map o5 : U, (p2) —
M., .. Viewing U.(p2) as a Ag-cell, and using the attaching map ¥y = ¥o(1,-) o
®5(1,-) 0 og, of U (p2) onto U(p1) we see that

Me,te = Ue(p1) Us, Ue(p2)-

Again, we view U.(p3) as Ag-cell. It takes only a slight extension to define
the attaching map for this cell. The map ¥3 = ¥3(1,-) o ®5(1,:) 0 o3 gives the
appropriate attaching map of OU,(p3) onto M, U U(p2) ~ M¢y—c Uy, Ue(p2).
Note that ¥a(1,-) o ®2(1,-) provides a homotopy equivalence M, . Uy, Ue(p2) —
U:(p1) Us, Uc(p2). Then the desired attaching map is given by

23 = \I/Q(]., ) o @2(1, ) o \1/3(1, ) e} ’~I>3(]., ) O 03.
It follows that
Moy 1e ~ Ue(p1) Us, Ue(p2) Us; Us(ps)-
In general, for each critical point py we define
Y =Pa(l,-) 0o ®o(l,-) 0... ¥k(1,:) o Bx(1,") o o%.
These maps gives a homotopy equivalence

M~ UE(PI) Us, U€(p2) U---Us, Us(pm)'

We shall see that under appropriate conditions (Definition 1), this cellular com-
plex is in fact a CW-complex.
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3. THE DEGREE OF AN ATTACHING MAP

Our goal is to show that, as in classical Morse theory, the degree of this attaching
map can be determined by counting the trajectories connecting essential critical
points. The difficulty is that, although these attaching maps are continuous, they
are in general not smooth. Lemmas 6, 7 and 8 show that the maps possess enough
regularity that we can establish a Smale-like transversality condition (Definition 1).
Using this definition, we can show that a finite number of trajectories connect
critical points whose indices differ by one. Finally we define a degree to each such
pair.

Lemma 3. Let K be a stratum with dimension k and L be a stratum in the closure
of K with dimension k—1. Let p € K and suppose that ¢(s,p) € K for s <t, and
o(s,p) € L fort, < s <T. Then there is a neighborhood U C K of p such that
o(T,-) : U — M 1is smooth.

Proof. Choose a coordinate system near ¢(t,,p) such that for ¢ € K, zx41(q) =

- =zp(q) =0 and for ¢ € L, zx(q) = -+ = z,(q) = 0. We know that the kth
coordinate satisfies ¢k (tp,p) = 0, and in addition

%l %o,
Ot 1(ty.p)
by the definition of Morse function.

From the Implicit Function Theorem, it follows that there is an open set U C K
containing p and an open set V' C R such that for each ¢ € U there is a unique
9(q) € V such that ¢x(g(q),q) = 0. Moreover, the function g is smooth.

We can use this function g to define two additional functions: v: U - R x U
given by v(q) = (9(q), ¢) and 7 : y(U) — R x M given by 7(t,q) = (T — t,¢(t, q))-
Since ¢ is smooth whenever it remains in a single stratum, these are themselves
smooth functions. We can write

@(T,q) = (poTov)(q),

a composition of smooth functions, so ¢(T,-) : U — M is smooth.
q.e.d.

Lemma 4. Let K be a stratum with dimension k — 1 in the closure of a stratum
L with dimension k. Let p € K and suppose that ¢(s,p) € K for s < t, and
¢(s,p) € L fort, < s <T. Then there is a neighborhood U C K of p such that
o(T,-) : U — M is smooth.

Proof. Choose a coordinate system near ¢(tp,p) such that for ¢ € K, zx(q) =--- =
zn(q) = 0and for g € L, z541(q) = - -+ = zn(q) = 0. Let h(s,q) = (=V[)i(¢(s,q))-
Then h is a smooth real valued function. Since the trajectory ¢(-,p) moves from
K to L at time t,, we must have h(t,,p) = 0.

By the definition of a Morse function, we know that

LI
(tp,p)
It then follows from the Implicit Function Theorem, that there is an open set U C K
containing p and an open subset V' C R such that for each ¢ € U there is a unique
9(q) € V such that h(g(q), g) = 0. Moreover, the function g is smooth.
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As before, we can define smooth functions v : U — RxU given by v(¢) = (9(q), q)
and 7: v(U) — R x M given by 7(¢,q9) = (T —t,¢(t,q)) and write

o(T,q) = (po707v)(9),

Again, this is a composition of smooth functions, and so ¢(T, ) : U — M is smooth.
q.e.d.

Now let p; be an essential critical point with index A2 = j and p; an essential
critical point with index A\; = j — 1. Suppose that S(p1) N U(p2) # 0. Choose a

g€ S(p1)NU(p2) NW.
Then there is a ¢; € U(p2) and a time T such that ¢ = o(T, q1).

Lemma 5. If the trajectory ¢(s,q1) only ever changes between strata whose differ-
ence in dimension is 1, then there is a neighborhood V in the stratum containing
q1 such that o(T,-): V — M is smooth.

Proof. The result follows from repeated application of Lemma 6 and Lemma 7.
Since f~1(—o0,7] is compact for each choice of r, there can be only finitely many
stratum changes ([Han]). For each stratum change, i = 1,..., N, we get a corre-
sponding neighborhood V;. Since there are finitely many, we may choose

V=wnn--NVy.
q.e.d.

Definition 1. We say that the Morse function f is a Morse-Smale function if for
each pair of critical points, p and p’ with f(p) > f(p'), and for £ sufficiently small
the parametrized space U(p) and the set S.(p’) = S(p’) N f~1((—o0, f(P') + €])
intersect transversely.

Let p; and p; be two critical points with indices A; and );, respectively, satisfying
Aj —A; = 1. Let T be the set of trajectories from p; to p;. We wish to show that the
transversality condition in Definition 1 together with the compactness of M ensure
that T is a finite set.

We begin with the following

Lemma 6. Suppose that M is an m- -manifold, S ak- dimensional regular subman-
ifold. Let U be an ( — k)-manifold, and @ : U — M a smooth map such that
S th &(U). Then ®1(S N &(U)) consists of isolated points in U.

Proof. First, since dim(S) + dim(®(U)) = k + (m — k) = m, the transverse inter-
section of S and ®(U) is zero dimensional. Let ¢ € U such that ®(q) € 5. We will
show that there is a neighborhood N, of ¢ such that ®~1(5) N N, = {g}.

let x = (w ,...,z™) be a coordinate chart on M such that x(®(g)) = (0,...,0),
and (z!,... ) gives a coordinate chart on S. Then for p € S

z'(p) =0, fori=k+1,...,m

Let x = (z**1,...,2™). We want to show that X = X o ® is a coordinate chart

on U. Tt suffices to show that if y is a coordinate chart on U, then D(X o y™!) is
non-singular.



8 DAVID G.C. HANDRON

Since S th ®(U), the vectors

9 9 9 9
ot s mg o) Bo | mpagr ) oo @ | o
{awl 2@ i 20 (W““Iq) (3y"|q) }

form a basis for T¢(q)(M), as do {%b(q), e Ba:imlq’(‘I)}' We can thus write

0 " .0
Y = Z
Then the matrix

1 0 --- 0
0o 1 --- 0 I | 0
: o o o _[Ik 0]
Qi1 CHR I : - : CLx M
s z o o
| om, am |

is non-singular (having linearly independent rows). It follows that the matrix M is
non-singular. But M is the transpose of the matrix for

D(Xo(®oy ') =D((XRo®)oy )= D(Xxoy™),

evaluated at y(q), so D(X o y~!) is non-singular in a neighborhood of y(q).
Now, since X is a coordinate chart in a neighborhood of g, there is an open set
N, of ¢ such that for ¢’ € N, with ¢’ # ¢, X(¢') # (0,...,0). So ®(¢') ¢ S.
q.e.d.

Lemma 7. Let f: M — R be a Morse-Smale function on a manifold with corners
M. Let p; and p; be two critical points of f with indices \; and \; respectively,
satisfying A\j — A; = 1. Then the set T of trajectories from p; to p; is finite.

Proof. Let ¢; = f(p;) and ¢; = f(p;). Define U= O0U¢(pj). Then U is diffeomorphic
to §* 1. For each element of 7 € T there is exactly one g, € unr.

Suppose that ¥ is an infinite set. Then, since Uis compact, there is a convergent
sequence {g;}32; such that ¢; € Un T; for some 7; € . Let qo = lim;_, ¢;.

We wish to show that ¢p = Un 79 for some 19 € €. Choose T such that for
p=¢(T,q), f(p) < ¢; +¢&. Then for i sufficiently large f(¢(T,q;)) < ¢; + ¢, and
since for each ¢ lim;—, o ©(t,¢:) = pi, ©(T,q;) € Se(p;) for i sufficiently large. Now,
¢ is continuous, and Sc(p;) is closed, so p = lim; 00 (T, q;) € Se(p;). It follows
that go lies on some trajectory connecting p; to p;.

Let ¢ = f(p). Let M = f1(c), S = S<(p;) " M and let Uy be a neighborhood of
go on which ¢(T),-) is smooth. For each g € Uy there is a trajectory of ¢ containing
g. We will denote this trajectory by ~,. For a given ¢ € Uy, let § = 74 N (7,
a="7,N(T,")"1(5), and let t, € R such that

o(te, @) =q if () > f(q)
o(—tq,q) =4 if f() < £(@)
The maps g — ¢, ¢ — @ and g — ¢4 are all smooth, and so the function ® : Uy —
M given by ®o(q) = (T +14,q) is smooth. Moreover, ® = ®¢|z, : UNUp — M.
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We can let k = dim(S) =n— A; — 1 and m = dim(M) = n — 1. Then dim(U) =

Aj —1 =m — k. Choose a coordinate chart at p € M, x = (z!,...,2™), such that

(z!,...,z*) is a coordinate chart on S and

i(p') £0 forp ¢ Sandi> k.

This can be done in such a way that WQH |p is tangent to the trajectory 7.

Now choose a coordinate chart y = (y**1,...,y™) on U.(p;), such that y =
(y**1,...,9™) is a coordinate chart on U and %Lm is tangent to the trajectory
70. Then

0 ~ .
@*(a—yi|qo) €T,Mfori=k+1,...,m.

In addition, ‘I’*(ayinho) will be tangent (at p) to the trajectory 7o.
Since f is a Morse-Smale function, the vectors

0 0 0 0
{ Gl gl ®- gl (o le) |

span T, M. Since the vectors %LD and <I>*(3yin|qo) are tangent to 7,79, and the

remaining m = dim(M ) vectors are all in TpM ,

0 0 0 0
{ il el zzla) o 8l sl |

form a basis for TI,M . The first k& vectors of this basis are a basis of Tp§ , and the

remaining m — k vectors are a basis for T,®(U). It follows that
Stha).
By Lemma 9, @:1(5 N ?([7 )) consists of isolated points. Note that for sufficiently
large i, ¢; € @71 (S N ®(U)) and in addition go € ®~'(S N ®(U)). This, however,

contradicts the fact that lim; ,., ¢; = qo. Consequently, the number of trajectories
connecting p; to p; must be finite. q.e.d.

Now assume that M is an oriented manifold. At each essential critical point
p, the tangent space T, M can be decomposed into a stable space and an unstable
space, T,M = E*(p)®E~ (p). Choose an orientation for the unstable space E~(p).
This induces an orientation on E*(p) in the following way:

Choose a basis v1,...,vxp) € E~(p) which represents the orientation on E~(p).
Then choose vx(p)+1,- - -, Un € ET(p) such that v, ..., v, is a basis which represents
the orientation on T, M. The vectors vj(p)41,---,Vn determine an orientation for
E™ (p).

Now for critical points p; and p;, the orientation on E*(p;) determines an orien-
tation on S¢(p;), which in turn determines an orientation on T,S(p;) for ¢ € S(p;).
In a similar way, the choice of orientation on E~(p;) induces an orientation on
Ty U(pj) for ¢ € U(p;).

Note that if the function f : M — R is a Morse-Smale function and ¢(7,¢') = g,
then the map (T, -), restricted to U(p;) has full rank at ¢(T,-)~"!(q).

Now the map ¢(T),-), pushes forward the orientation on T, U(p;) to give an
orientation on Typ(T,U(p;)). Since dim(¢(T,U(p;))) = j and dim(S(p;)) = n —
j + 1, these two sets intersect in the one dimensional trajectory through q. We
can choose a basis for T (T, U(p;)) which represents the induced orientation and
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such that the last vector is 4 |7¢(t,q1). We also may choose a basis representing
the orientation on T,S(p;), with 4 |7¢(t,q1) as its first vector. When combined,
these bases give an orientation for Ty M. If this orientation agrees with the chosen
orientation on M then we say the sign of the trajectory from p; to p; through g¢; is
+1. Otherwise, the sign is —1.

Now if T is the set of trajectories from p; to p;, Lemma 10 ensures that T is a
finite set. So, we can define

degree(py,p) — 3 sigal(r).
TEX

This degree, we shall see, is the degree of the attaching map ; at p;.

4. THE MORSE COMPLEX FOR A MORSE FUNCTION ON A MANIFOLD WITH
CORNERS

Theorem 8. Let M be a compact orientable manifold with corners, and f : M — R
be a Morse-Smale function satisfying the conditions of Lemma 8. Let C;(f) be the
set of essential critical points of f with index j, and V; the free Abelian group of
formal Z-linear combinations of the elements of C;(f). For each j = 1,...,n =
dim(M) define a map 0; : V; — V;_1 by setting

0;(p) = Z degree(p, q9)q
q€C;5-1(f)
for each p € C;(f), and extending linearly to all of V;. For j =0, set 9y(p) =0
The free Abelian groups V; and maps 0; form a chain complex whose homology
groups are identical to the Z-homology groups of the topological space M.

Proof. Let Py denote the cell U, (pr). We know that M is homotopy equivalent to
the cellular complex
X=DP Us, PQU"‘UEm P,.

Let Ci(X) be the set of cells in X having dimension k. Let W} be the free
Abelian group of formal Z-linear combinations of the elements of Ci(X). Note
that Wy is naturally isomorphic to Vi, since there is a one-to-one correspondence
between cells P; € Ci(X) and critical points p; € Cg(f).

We define maps B,EW) : Wy — Wy_1 by setting

o)=Y deg(3y,P)
P,eCr_1(X)
for each P; € Cy(X), where X; is the attaching map for the cell P;. The degree
deg(X;, P;) is determined by choosing a ¢ € P; such that X;(0P) intersects P;
transversely at ¢, and then adding the number of points in Ej_l(q) at which ¥; is
orientation preserving, and subtracting the number of points in Ej_l(q) at which 3;
is orientation reversing. Given P; € Cy(X) and P; € Cj_1(X) we must determine

this degree.
Recall that ¥; was defined by

2]J' = \112(1") 0(1)2(1") Orrr O‘Ilj(la') O‘I)j(la') ©0j,

which attaches U (p;) to PyUs, PoU---Us,_, P;_; This map can be thought of as a
sequence of homotopy equivalences, one for each of the critical points pq,...,pj_1.
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We can define
Yij =¥it1(1,-) 0o ®ip1(1,-) 0---0 ¥ (1,-) 0 @4(1,-) 0 0j.
Then X5 : U, (pj) — M, —eUs,U(p;)U- - -Us;_,Uc(pj—1). We have the relationship
deg(X;, F;) = deg(Xsj, Ue (pi))-

The map ¥;; is defined by a sequence of flows. They alternate between a @
which follows the p-trajectories, and a ¥ which does not. Note, though, that the
flow ¥y deviates from the p-trajectories only in a neighborhood of each critical
point pg. If € is chosen to be small enough, we can ensure that these neighborhoods
do not intersect any of the ¢-trajectories connecting p; to p; (except for the region
H around p;). But the flow ¥;;; on H preserves S(p;), so Ei_jl(pi) consists of
those points in OU.(p;) that lie on trajectories connecting p; to p;. Since f is a
Morse-Smale function 3;;(0U, (p,)) will intersect OU, (p;) transversely at p;.

Consider a point ¢ € OU.(p;) N 7 for some trajectory connecting p; to p;. The
map ¥;; is orientation preserving at ¢ if sign(r) = +1, and orientation reversing if
sign(7) = —1. It follows that

deg(X3;, P;) = deg(X;j, p;) = degree(p;, p;).
The above argument also shows that if
index(p;) > index(p;)
then no trajectories of ¢ connect p; to p;, and so
2;(0U:(p;)) NUe(pi) = 0

(assuming ¢ is sufficiently small). So the attaching maps carry the boundary of each
cell to a collection of lower dimensional cells. It follows that the cellular complex
X is a CW-complex. The Z-homology groups of X are the homology groups of the
chain complex
() a™ ™
0(—W0 — Wy &— ... < W.,.

But since Wi, =2 V;, and deg(X;, P;) = degree(p;, p;), the homology groups of the

chain complex

0— & wn& . &y,
are the same as the Z-homology groups of X. Since homology groups are a homo-
topy invariant, and X is homotopy equivalent to M, the result follows.
q.e.d.
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