Exam \#1 Review

The exam will be closed book and notes; only the following calculators will be permitted: TI-30X IIS, TI-30X IIB, TI-30Xa.

1. (25 points)

Consider a simple financial model with two time $t=0,1$, two stocks S^{1} and S^{2} and a one period interest rate of $r=.10$. The initial prices for the stocks are $S_{0}^{1}=S_{0}^{2}=\$ 20$. There are three possible outcomes for the stock prices, $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$. The stock prices in each case are

$$
S_{1}^{1}\left(\omega_{1}\right)=24, \quad S_{1}^{1}\left(\omega_{2}\right)=18, \quad S_{1}^{1}\left(\omega_{3}\right)=16
$$

and

$$
S_{1}^{2}\left(\omega_{1}\right)=24, \quad S_{1}^{2}\left(\omega_{2}\right)=24, \quad S_{1}^{2}\left(\omega_{3}\right)=8
$$

Consider a derivative security V whose value at time $t=1$ is given by

$$
V_{1}\left(\omega_{i}\right)=\left|S_{1}^{1}\left(\omega_{i}\right)-S_{1}^{2}\left(\omega_{i}\right)\right|
$$

(a) Explain, without constructing a replicating portfolio, why $\$ 0<V_{0}<\$ \frac{8}{1.10}$.
(b) Find a replicating strategy, and use it to determine V_{0}.

2. (25 points)

Suppose that between $t=0$ and $t=1$, you can borrow or invest any number of dollars at the one period rate of $r^{\$}=.06$. You can also borrow or invest any number of British pounds at the one period rate of $r^{£}=.04$. At $t=0$ the value in dollars of one pound is $E_{\$}^{£}=2$.
A stock S is listed on an American exchange, and can be purchased at $t=0$ for $S_{0}=\$ 50$ per share.
Consider a forward contract that at time $t=1$ requires its holder to receive one share of S in exchange for a payment of $£ K$, with the payment determined at $t=0$. Find a value for K that makes the value of the contract at $t=0$ equal to zero. Explain your reasoning with reference to a replicating portfolio.

3. (25 points)

Consider a portfolio that is long one European call option on a stock S with strike price K, and short one European call option on the same stock with strike price $L>K$. The expiration date of both options is $t=T$. Such a portfolio is called a bull spread. At time $t=T$ the payoff is

$$
\left(S_{T}-K\right)^{+}-\left(S_{T}-L\right)^{+} .
$$

The one-period interest rate between $t=0$ and $t=T$ is $r>0$.
(a) Why must the value of the bull spread at time $t=0$ be positive?
(b) Explain how to replicate this portfolio using a European put with strike price K and expiration date T, a European put with strike price L and expiration date T, and a loan or investment at the interest rate r. You may take a long or short position in either of the put options. [Hint: You may want to use the identity $\left.(X-A)^{+}-(A-X)^{+}=X-A.\right]$
(c) Determine the value of the bull spread at $t=0$ in terms of the values of the put options, P_{0}^{K} and P_{0}^{L}, the strike prices, K and L, and the interest rate r.

4. (25 points)

Consider a financial model with two times $t=0$ and $t=1$ and a one period interest rate $r>0$. We say that a pair of strategies, (X, \widetilde{X}) is an Arb pair provided that

- Both strategies are self financing
- The initial capitals satisfy: $X_{0} \leq \widetilde{X_{0}}$
- The terminal capitals satisfy $X_{1} \geq \widetilde{X_{1}}$ for sure.
- With positive probability, the terminal capitals satisfy: $X_{1}>\widetilde{X_{1}}$

Show that a model is arbitrage free if and only if it is free of Arb pairs. [Recall that an arbitrage is a strategy V that satisfies $V_{0}=0, V_{1} \geq 0$ for sure, and $V_{1}>0$ with positive probability.]
5. (25 points) Omit.
6. (25 points) Consider a financial model with two trading times, $\{0,1\}$, a single stock, S that pays no dividents, and a bank.
At $t=0$ we can buy or sell any number of shares of the stock at the price $S_{0}=\$ 40$ per share. At $t=1$ the value of one share of stock will be either $\$ 80$ or $\$ 20$. The (one-period) interest rate for loans or deposits between $t=0$ and $t=1$ is $r=25 \%$.
X is a portfolio holding one call option on the stock with strike price $K^{C}=\$ 45$ and one put option on the stock with strike price $K^{P}=\$ 25$.
(a) Explain, without constructing a replicating portfolio, why $4<X_{0}<28$. Be sure to fully justify any claims you make in your explanation.
(b) Find a replicating strategy and use it to determine X_{0}.
7. (25 points) Consider a financial model with three trading times, $\{0,1,2\}$ and two currencies, $\$$ and $£$. You are able to borrow or invest dollars at the one-period interest rate of $r^{\Phi}=2 \%$. You can borrow or invest pounds at the one period interest rate of $r^{£}=3 \%$. These rates are valid for investments between $t=0$ and $t=1$ or between $t=1$ and $t=2$. At $t=0$ the spot exchange rate is $£ 1=\$ 1.80$.
Consider also a contract that requires you to pay K dollars at $t=1$ and receive $£ 1000$ at $t=2$.
(a) Describe a replicating portflio for this contract. What is the value (in dollars) of this contract at $t=0$?
(b) For what value of K will this contract have value zero at $t=0$?
8. (25 points) Consider a financial model with four trading times, $\{0,1,2,3\}$, a stock, S, and a bank. The stock is available at $t=0$ at the price $S_{0}=\$ 100$. Funds can be borrowed from or invested with the bank at the constant one-period interest rate $r=10 \%$.
A derivative security, V, is available that, at time $t=3$ pays the holder $S_{2}-S_{1}$, the difference between the value of the stock at time $t=2$ and $t=1$.
Describe a replicating portfolio and determine the arbitrage-free price of the security at $t=0, V_{0}$.
9. (25 points) An investor creates a portfolio at $t=0$ using the following assets:

- Shares of a stock, S, that is available for sale or purchase at $t=0$ for the price $S_{0}=\$ 50$.
- A put option on the stock with strike price $K_{p}=\$ 60$ and expiration date $t=T$. This put option is available at $t=0$ for $P_{0}=\$ 14$.
- A call option on the stock with strike price $k_{c}=\$ 40$ and expiration date $t=T$. This call option is available at $t=0$ for $C_{0}=\$ 12$.
- A forward contract on the stock, with execution date $t=T$ and forward price $\mathcal{F}=$ $\$ 55$. This contract has value equal to zero at $t=0$.

The investor's portfolio holds 10 shares of the stock, 15 puts, a long position on 5 of the forward contract, and a short position on 10 of the calls.
(a) What is the initial capital, X_{0}, of the investors portfolio?
(b) If the price of the stock rises to $S_{T}=\$ 65$ per share, what will be the value, X_{T}, of the investors portfolio?
(c) If the price of the stock falls to $S_{T}=\$ 35$ per share, what will be the value, X_{T}, of the investors portfolio?

10. (25 points) Omit.

11. (25 points) Consider a financial model with two times $\{0,1\}$ and a stock, S, that pays no dividends. At $t=0$ we can buy or sell any number of shares at the initial price $S_{0}=\$ 44$. There is also a bank at which we can borrow or invest any amount at the one period interest rate $r=.25$. Additionally, there is a put option P on the stock with expiration date $T=1$ and strike price $K_{p}=\$ 40$ which can be bought or sold in any quantity for $P_{0}=\$ 4$.

There are three possible outcomes $\omega_{1}, \omega_{2}, \omega_{3}$ for the stock price:

$$
S_{1}\left(\omega_{1}\right)=\$ 80 ; \quad S_{1}\left(\omega_{2}\right)=\$ 60 ; \quad S_{1}\left(\omega_{3}\right)=\$ 20
$$

Consider a call option on the stock with expiration date $T=1$ and strike price $K_{c}=\$ 70$. Construct a replicating portfolio for the call option, and determine it's arbitrage-free price C_{0} at $t=0$.
12. (25 points) At $t=0$ the following exchange rates are valid:

$$
\begin{aligned}
& 1 \text { pound }=2 \text { dollars } \\
& 1 \text { euro }=1.5 \text { dollars }
\end{aligned}
$$

Between $t=0$ and $t=1$, dollars, pounds, and euros can be borrowed or invested at the interest rates

$$
r^{\Phi}=5 \%, \quad r^{£}=4 \%, \quad r^{\text {euros }}=7 \%
$$

An American investor arranges with a bank in London to receive, at time $t=1$, capital in several different currencies in exchange for a payment (in pounds) at time $t=0$.
If the investor is to receive $\$ 10$ and $£ 10$ and 10 Euros, what is the arbitrage-free value for the payment (in pounds) at $t=0$?
13. (25 points) Consider a financial model that includes two trading times, $\{0, T\}$, an ideal bank with constant effective rate R, and a security V which can be bought or sold in any quantity at $t=0$ for the price V_{0}.
Suppose that, under every possible outcome, the value V_{T} of the security at time $t=T$ satisfies

$$
A<V_{T}<B
$$

Show that the arbitrage-free price V_{0} of the security at $t=0$ must satisfy

$$
\frac{A}{(1+R)^{T}}<V_{0}<\frac{B}{(1+R)^{T}}
$$

14. (25 points) The price per share of a certain stock, S , is very high: $S_{0}=\$ 10,000$. In order to facilitate trading in this stock, a bank has offered a contract that allows investors to divide the cost into multiple payments. The terms of the contract are:

- The investor makes payments of A dollars at times $t=1$ and $t=2$.
- At $t=2$, the investors receives one share of the stock.
- No money is exchanged when the contract is entered at $t=0$, and the amount A of the payments is agreed to at $t=0$.

Assuming there is a bank at which any amount may be borrowed or invested at the constant effective rate of 5%, and that the stock makes no dividend payments, what is the arbitrage-free amount A for the payments?

Exam \#1 Formula Sheet

Forward Exchange rates:

$$
\mathcal{F}_{\mathcal{A}}^{\mathcal{B}}=\frac{1+r_{A}}{1+r_{B}} E_{A}^{B}
$$

Put payoff at maturity T :

$$
P_{T}=\left(K-S_{T}\right)^{+} .
$$

Call payoff at maturity T :

$$
C_{T}=\left(S_{T}-K\right)^{+} .
$$

No-arbitrage price of a fixed-income security

$$
\mathcal{P}=\sum_{i=1}^{N} \frac{F_{i}}{\left(1+R_{*}\left(T_{i}\right)\right)^{T_{i}}}=\sum_{i=1}^{N} F_{i} D\left(T_{i}\right)=\sum_{i=1}^{N} \frac{F_{i}}{\left(1+R_{I}\right)^{T_{i}}}
$$

