Week \#6 Homework: Due Wednesday, February 19
Spring 2020

1. Suppose that there is an ideal bank, but the spot rates are given as nominal rates $r[4]_{*}\left(\frac{i}{4}\right)$, $i \in\{1,2,3, \ldots\}$, corresponding to quarterly compounding, i.e. the discount factors are given by

$$
D(T)=\frac{1}{\left(1+\frac{r[4] *(T)}{4}\right)^{4 T}}
$$

when T is an integer multiple of $\frac{1}{4}$.
At $t=0$, Aidan agrees to borrow $\$ 100,000$ at $t=1$ and repay the loan with a single lumpsum payment of $\$ 112,000$ at $t=3$. Given that $r[4]_{*}(1)=.06$ and there is no arbitrage, find $r[4]_{*}(3)$.
2. Annuities that will pay $\$ 500$ twice per year for the next 5 years (i.e., 10 payments in all) are being issued today at the arbitrage-free price of $\$ 3850$ per annuity. Coupon bonds having maturity 5 years and face value $\$ 1,000$ are being issued today at the arbitrage-free price $\$ 1,050$. These bonds pay coupons twice per year at the nominal coupon rate $q[2]=10 \%$. (The coupon payments are made on the same days as the annuity payments.). Find the effective 5 -year sopt rate $R_{*}(5)$.
3. Suppose that there is an ideal money market with constant effective rate R. A customer calls the bank and asks: "If I deposit $\$ 1,000$ today, deposit an additional $\$ 2,0006$ months from today, and make no other deposits or withdrawals, what will my account balance be two years from today?" The bank answers $\$ 3215.65$. Determine R.
4. Coupon bonds with maturity $T=10$ years and face value $\$ 5,000$ that pay coupons twice per year at the nominal rate $q[2]=.06$ are currently trading at $\$ 4851.20$ per bond. Coupon bonds with maturity $T=10$ and face value $\$ 10,000$ that pay coupons twice per year at the nominal rate $q[2]=.08$ are trading at $\$ 11,261.32$ per bond. Assuming that there is no arbitrage, determine the prices of each of the following fixed-income securities:
(a) A zero-coupon bond with face value $\$ 20,000$ and maturity 10 years.
(b) An annuity that has maturity 10 years and makes payments of $\$ 500$ twice per year.
(c) A coupon bond with maturity 10 years and face value $\$ 7,500$ that pays coupons twice per year at the nominal rate $q[2]=.06$.
5. Find the effective yield to maturity, R_{I}, and the nominal yield to maturity, $r_{I}[2]$, for the three securities you priced in Problem \#4. You may wish to use a numerical method to find the roots of the polynomial used to compute the yield for securities (b) and (c).

