Homework \#4: Due Wednesday, February 5.
Spring 2020

1. Consider a financial model that includes a stock, S and a bank, and has two trading times $\{0,1\}$.
The bank will accept deposits or make loans at a one-period interest rate of $r=\frac{1}{4}$. An amount B_{0} (positive for deposits, negative for loans) at time $t=0$ will grow to $B_{1}=(1+r) B_{0}=\frac{5}{4} B_{0}$ at time $t=1$.
At time $t=0$, any number of shares of stock can be bought or sold at the price $S_{0}=\$ 64$. At time one, the stock price will be one of two values, $S_{1}(H)=\$ 125$ or $S_{1}(T)=\$ 50$
(a) Compute the initial prices P_{0}^{50}, P_{0}^{100}, and P_{0}^{150} of put options on the stock with strike prices 50, 100, and 150 respectively.
(b) Compute the initial prices C_{0}^{50}, C_{0}^{100} and C_{0}^{150} of call options on the stock with strike prices 50, 100, and 150 respectively.
(c) Compute the initial price $C_{0}^{50}-2 C_{0}^{100}+C_{0}^{150}$ of the butterfly spread created by trading in calls. Also compute the initial price $P_{0}^{50}-2 P_{0}^{100}+P_{0}^{150}$ of the butterfly spread created by trading in puts. Is it the same or different from the initial price of the butterfly spread created using calls? Why?
2. [Exercise 1.14] (Another Alternative Definition of Arbitrage). Consider a financial model with two times $t=0$ and $t=1$. Assume that there is a bank at which one can borrow or invest any amount of money between $t=0$ and $t=1$ at the one period interest rate $r \geq 0$, where r is a constant that is known at time 0 . Let us agree to say that a strategy is of type (Ar) provided that it is self-financing and the initial capital X_{0} and terminal capital X_{1} satisfy
(i) $X_{1} \geq(1+r) X_{0}$ for sure;
(ii) There is a strictly positive probability that $X_{1}>(1+r) X_{0}$

Show that the model is arbitrage-free if and only if there are no strategies of type (Ar).
3. Consider a financial model with two times, $t=0$ and $t=1$, and two stocks S^{1} and S^{2} that pay no dividends. We can buy or sell any number of shares of each of the stocks at $t=0$ at the initial prices $S_{0}^{1}=S_{0}^{2}=\$ 92$. There is also a bank at which we can borrow or invest any amount of money between $t=0$ and $t=1$ at the (one-period) interest rate $r=.25$. There are three possible outcomes ω_{1}, ω_{2} and ω_{3} regarding the stock prices, each having probability $\frac{1}{3}$. The possible stock prices at $t=1$ are given by

$$
\begin{array}{ll}
S_{1}^{1}\left(\omega_{1}\right)=\$ 210, & S_{1}^{1}\left(\omega_{2}\right)=\$ 90, \\
S_{1}^{2}\left(\omega_{1}\right)=\$ 210, & S_{1}^{2}\left(\omega_{2}\right)=\$ 180,
\end{array} S_{1}^{2}\left(\omega_{3}\right)=\$ 30 . ~ \$
$$

Consider a derivative security V with payoff at $t=1$ given by

$$
V_{1}\left(\omega_{i}\right)=\max \left\{S_{1}^{1}\left(\omega_{i}\right), S_{1}^{2}\left(\omega_{i}\right)\right\}, \quad i=1,2,3
$$

i.e. if outcome ω_{i} occcurs, the holder of the security receives the larger of $S_{1}^{1}\left(\omega_{i}\right)$ and $S_{1}^{2}\left(\omega_{i}\right)$ at $t=1$. (This is an example of a basket option.) Let V_{0} be the arbitrage-free price of V at $t=0$.
(a) Explain why we know that $\$ 92<V_{0}<\frac{\$ 210}{1.25}$ without finding a replicating strategy.
(b) Find a replicating strategy and use it to determine V_{0}.
4. Consider a one-period binomial model that includes a stock, S, a bank, and has two trading times $\{0,1\}$. The bank will accept deposits or make loans at a one-period interest rate of $r=.20$. An amount B_{0} (positive for deposits, negative for loans) at time $t=0$ will grow to $B_{1}=(1+r) B_{0}=\frac{6}{5} B_{0}$ at time $t=1$. At time $t=0$, any number of shares of stock can be bought or sold at the price $S_{0}=\$ 35$. At time one, the stock price will be one of two values, $S_{1}(H)=\$ 60$ or $S_{1}(T)=\$ 30$ There is a $2 / 3$ probability that the value of the stock at $t=1$ will be $\$ 60$, and a $1 / 3$ probability that it will be $\$ 30$. (You may take it for granted that this model is free of arbitrage.)
A client comes to you with $\$ 100,000$ to invest. She thinks the stock will increase in value, but is unwilling to incur any loss of capital. You you advise her to use all of her capital to purchase a derivative security that makes payments

$$
\left\{\begin{array}{cl}
V_{1}(H)=A, & S_{1}=60 \\
V_{1}(T)=\$ 100,000, & S_{1}=30
\end{array}\right.
$$

(a) Without calculating the arbitrage-free value of A, one can see that to avoid arbitrage, the value of A must be more than $\$ 120,000$. Explain why.
(b) Find the arbitrage-free value of A.
5. Consider a one-period trinomial model that includes a stock S, a put option P on the stock, and a bank. The bank will accept deposits or make loans at a one-period interest rate of $r=.25$. At time $t=0$, any number of shares of stock can be bought or sold at the price $S_{0}=\$ 32$. At time one, the stock price will take one of three values, $S_{1}\left(\omega_{1}\right)=\$ 60$, $S_{1}\left(\omega_{2}\right)=\$ 40$ or $S_{1}\left(\omega_{3}\right)=\$ 20$ At time $t=0$ any number of put options on the stock with strike price $K=\$ 30$ and maturity $T=1$ can be bought or sold at the price $P_{0}=\$ 1.60$. You may take it for granted that this model is free of arbitrage.)

Consider a derivative security V with payoff at $t=1$ given by

$$
V_{1}\left(\omega_{i}\right)=\left|S_{1}\left(\omega_{i}\right)-40\right|
$$

for $i=1,2,3$. (This security is called a straddle option on S with a strike price of $\$ 40$ and maturity $T=1$) Find the arbitrage-free price V_{0} of V at $t=0$.

