1. Consider a complete one-period model with $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and let V^{1}, V^{2}, V^{3}, and V^{4} denote the Arrow-Debru securities with payment functions

$$
V_{1}^{i}(\omega)= \begin{cases}1 & \omega=\omega_{i} \\ 0 & \omega \neq \omega_{i} .\end{cases}
$$

Assume that the initial prices of these securities are

$$
V_{0}^{1}=\$ 0.38, \quad V_{0}^{2}=\$ 0.095, \quad V_{0}^{3}=\$ 0.19, \quad V_{0}^{4}=\$ 0.285
$$

(a) Find the arbitrage-free price W_{0} of the derivative security W with payment function W_{1} given by

$$
W_{1}\left(\omega_{1}\right)=14, \quad W_{1}\left(\omega_{2}\right)=3, \quad W_{1}\left(\omega_{3}\right)=0, \quad W_{1}\left(\omega_{4}\right)=-6 .
$$

(b) Determine the interest rate r.
2. Consider a one-period binomial model with $u=1.2, d=.95, r=.05$ and $\mathbb{P}(H)=\frac{1}{2}$, $\mathbb{P}(T)=\frac{1}{2}$.
(a) Suppose that $U(x)=\sqrt{x}, x>0$ and that $X_{0}=\$ 1,000$. Fine the amount of money invested in stock at $t=0$ and the amoutnt of money in the bank at $t=0$ in the portfoio having the largest expected utility. (Use $S_{0}=100$ in your computations.)
(b) Choose a percentage α, with $.2<\alpha<.8$, that you feel would be a reasonable percentage of an initial investment X_{0} to be put into a stock fund with a one-year investment horizon. (In other words, you will invest αX_{0} in the stock and $(1-\alpha) X_{0}$ in the bank at $t=0$ with the goal of maximizing your expected utility at time 1.)
FInd a value $\beta>0$ such that if the utility function

$$
U(x)=\frac{-1}{x^{\beta}}, \quad x>0
$$

is employed, then the optimal portfolio will have αX_{0} invested in the stock at $t=0$ and $(1-\alpha) X_{0}$ in the bank at $t=0$.
3. Consider a one-period binomial model with $u=1.2, d=.9, r=.1$ and $S_{0}=100$. An investor has utility function $U(x)=\ln x$ and initial capital $X_{0}=100$. Assume that the optimal strategy is to buy 1 share of stock (and invest nothing in the bank) at time 0. Determine $\mathbb{P}(H)$ and $\mathbb{P}(T)$.
4. Consider a complete, one-period model with $r=.1, \Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, and

$$
\mathbb{P}\left(\omega_{1}\right)=\frac{1}{3}, \quad \mathbb{P}\left(\omega_{2}\right)=\frac{1}{3}, \quad \mathbb{P}\left(\omega_{3}\right)=\frac{1}{3}
$$

and

$$
\tilde{\mathbb{P}}\left(\omega_{1}\right)=\frac{1}{4}, \quad \tilde{\mathbb{P}}\left(\omega_{2}\right)=\frac{3}{8}, \quad \tilde{\mathbb{P}}\left(\omega_{3}\right)=\frac{3}{8} .
$$

Suppose that an investor has initial capital $X_{0}=100$ and that the investor's utility function is

$$
U(x)=\ln x, \quad x>0
$$

Find the terminal capital \hat{X}_{1} of the portfolio \hat{X} that maximizes $\mathbb{E}\left[U\left(X_{1}\right)\right]$ over all portfolios having initial capital $\$ 100$.

