DIFFERENTIAL EQUATIONS HOMEWORK 1

2008 FALL

(1) 1.3.4. Determine the order of the differential equation; also state whether the equation is linear or nonlinear:

$$
\frac{d y}{d t}+t y^{2}=0
$$

(2) 1.4.12. Verify that each given function is a solution to the differential equation:
$t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y, \quad t>0 ; \quad y_{1}(t)=t^{-2}, \quad y_{2}(t)=t^{-2} \ln t$.
(3) 1.3 .18 . Determine the values of r for which the given differential equation has solutions of the form $y=e^{r t}$.

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0 .
$$

(4) 1.3.20. Determine the values of r for which the given differential equation has solutions of the form $y=t^{r}$ for $t>0$.

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=0
$$

(5) 1.3.27. Verify that each given function is a solution to the given partial differential equation:

$$
a^{2} u_{x x}=u_{t t} ; \quad u_{1}(x, t)=\sin (\lambda x) \sin (\lambda a t), \quad u_{2}(x, t)=\sin (x-a t),
$$

where λ is a real constant.

