Week \#12 Written Assignment: Due on Friday, November 15.

1. Consider the 3 -dimensional system of linear equations

$$
X^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] X
$$

(a) Find a fundamental set of solutions for this system. Note that -1 is one of the eigenvalues.
(b) Find the general solution, and use it to find the solution satisfying

$$
X(0)=\left[\begin{array}{c}
-4 \\
3 \\
2
\end{array}\right]
$$

2. Consider the 3 -dimensional system of linear equations

$$
X^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] X
$$

(a) Find a fundamental set of solutions for this system. Note that +1 is one of the eigenvalues.
(b) Find the general solution, and use it to find the solution satisfying

$$
X(0)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

3. (Taken from Boyce \& DiPrima) Consider the 3-dimensional system of linear equations

$$
X^{\prime}=A X=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
-3 & 2 & 4
\end{array}\right] X
$$

(a) Show that the three eigenvalues of the coefficient matrix, A, are $\lambda_{1}=\lambda_{2}=\lambda_{3}=2$. This is an eigenvalue of multiplicity 3 .
(b) Show that all the eigenvectors of the coefficient (corresponding to the eigenvalue 2) are multiples of

$$
V=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

(c) Using the information from parts (a) and (b), find one solution to the system.
(d) Find a generalized eigenvector, W_{1}, of the coefficient matrix, A, by solving

$$
(A-2 I) W_{1}=V
$$

Use this generalized eigenvector and the other information you have found to write down a second solution to the system.
(e) Show that if V and W are as above, and W_{2} is a vector satisfying

$$
(A-2 I) W_{2}=W_{1}
$$

then

$$
X=\frac{t^{2}}{2} e^{2 t} V+t e^{2 t} W_{1}+e^{2 t} W_{2}
$$

is a solution to the system.
(f) Find a vector W_{2} satisfying $(A-2 I) W_{2}=W_{1}$, and use it to write a third solution to the system.
(g) Compute the Wronskian for the three solutions you found in parts (c), (d), and (f). Is it non-zero? Do these three solutions form a fundamental set?

