Week \#1 Written Assignment: Due on Friday, May 22.

1. Given the differential equation and function

$$
\frac{d y}{d t}+20 y=24, \quad \phi(t)=\frac{6}{5}-\frac{6}{5} e^{-20 t}
$$

do the following:
(a) Identify the dependent and independent viariable(s).
(b) Classify the equation as linear/non-linear, and ODE/PDE. What is the order of the equation?
(c) Show that $y=\phi(t)$ is a solution to the differential equation.
2. Solve the initial value problem

$$
y^{\prime}=2 y^{2}+x y^{2}, \quad y(0)=1
$$

and determine where the solution attains its minimum value.
3. Using the direction field below for the differential equation

$$
\frac{d y}{d x}=x^{2}-y^{2}
$$

sketch solution curves satisfying the following initial conditions:

$$
y(0)=0, \quad y(-1)=\frac{1}{2}, \quad y(0)=-1, \quad y(1)=0
$$

4. Consider the differential equation

$$
\frac{d y}{d t}=1-t y
$$

(a) Find the isocline corresponding to slopes $m=0,+1,-1$
(b) Use the isoclines you found in part (a) to sketch a direction field for the equation. Include as many additional isoclines as you need to get a good sense for the behavior of solutions.
(c) Using the direction field you created in part (b) sketch some solution curves for this differential equation.
5. (Note: Don't make this problem harder than it really is, which is not too hard. It is a foreshadowing of things to come.)

$$
\begin{aligned}
& \text { 11111ノーーーーーーーーツノ1111 }
\end{aligned}
$$

(a) Show that the solution

$$
y(t)=\frac{1}{\mu(t)}\left[C+\int_{t_{0}}^{t} \mu(s) g(s) d s\right]
$$

of the differential equation

$$
y^{\prime}+p(t) y=g(t)
$$

can be written in the form $y(t)=C y_{1}(t)+y_{2}(t)$. Identify the functions $y_{1}(t)$ and $y_{2}(t)$.
(b) Show that $y_{1}(t)$ is a solution to the homogeneous differential equation

$$
y^{\prime}+p(t) y=0
$$

(c) Show that $y_{2}(t)$ is a solution to the original, non-homogeneous, differential equation

$$
y^{\prime}+p(t) y=g(t)
$$

