MATRIX ALGEBRA WEEK #12 ADDITIONAL PROBLEMS

2005 SPRING

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\left[\begin{array}{c}1\\0\\1\end{array}\right]\right)=2\left[\begin{array}{c}1\\0\\1\end{array}\right],\quad T\left(\left[\begin{array}{c}1\\2\\0\end{array}\right]\right)=-\left[\begin{array}{c}1\\2\\0\end{array}\right],$$

and

$$T\left(\left[\begin{array}{c}0\\1\\1\end{array}\right]\right) = 3\left[\begin{array}{c}0\\1\\1\end{array}\right].$$

The following problems refer to the linear transformation T.

- (1) Find a basis \mathcal{B} for \mathbb{R}^3 such that the \mathcal{B} -coordinate matrix $[T]_{\mathcal{B}}$ of the transformation T is diagonal.
- (2) Let A be the standard matrix for the linear transformation T. Find a diagonalization of A. (You shouldn't need to compute the matrix A to complete this problem.)
- (3) Find the standard matrix A for the transformation T.