Week \#2 Written Assignment: Due on Wednesday, May 27.

1. Evaluate the integral.

$$
\int \frac{x^{2}}{\left(3+4 x-4 x^{2}\right)^{3 / 2}} d x
$$

2. Evaluate the integral.

$$
\int \frac{2 x^{3}-8 x^{2}-7 x+9}{\left(x^{2}+x+1\right)(x-2)^{2}} d x
$$

3. Evaluate the integral.

$$
\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x
$$

4. We've seen that integrals of the form

$$
\int \tan ^{n}(x) \sec ^{m}(x) d x
$$

with a substitution when m is even (by factoring out a $\sec ^{2}(x)$ and converting the rest of the secants to tangests) or when n is odd (by factoring out a $\sec (x) \tan (x)$ and converting the rest of the tangests to secants).
(a) Show that if n is even and m is odd, the integrand can be converted to a rational function by expressing the tangents and secants in terms of sine and cosine and making a substitution.
(b) Evaluate $\int \tan ^{2}(x) \sec (x) d x$ by using the result of part (a) and integration by partial fractions.

