1. (a) Approximate $\int_{-2.5}^{2.5} x^{2} d x$ using the Midpoint Rule with $n=5$.
(b) What was the actual error in your approximation? (It may help to know that $\int_{-2.5}^{2.5} x^{2} d x=\frac{125}{12}$.)
(c) What value of n must you choose to be assured the same accuracy using the Trapezoid Rule. (It may help to know that $\sqrt{50}=7.0711$.)
2. Compute the following integrals:
(a)

$$
\int x^{3} \sqrt{9-4 x^{2}} d x
$$

(b)

$$
\int \frac{5 x^{2}-6 x+2}{(x-2)\left(x^{2}+1\right)}
$$

3. (a) Does $\int_{2}^{6} \frac{d x}{\sqrt{x-2}}$ converge? If so, evaluate it.
(b) Does $\int_{6}^{\infty} \frac{d x}{\sqrt{x-2}}$ converge? If so, evaluate it.
(c) Does $\int_{2}^{\infty} \frac{d x}{\sqrt{x-2}}$ converge? If so, evaluate it. If not, why not?
4. Compute the integral

$$
\int \frac{\sin (\sqrt{x+5}) \sin (2 \sqrt{x+5})}{4 \sqrt{x+5}} d x
$$

5. Compute the indefinite integral

$$
\int \frac{3 x^{2}-4 x+5}{(x-1)\left(x^{2}+1\right)}
$$

6. Compute the indefinite integral

$$
\int \frac{d x}{x^{4} \sqrt{16 x^{2}-9}}
$$

You may leave your answer in terms of powers of 3 and 4, you don't need to multiply them out.
7. (a) Show that in approximating the value of $\int_{a}^{b} f(x) d x$, the Trapezoid Rule and the Midpoint Rule satisfy

$$
\frac{1}{2}\left(T_{n}+M_{n}\right)=T_{2 n}
$$

(b) Approximate the integral $\int_{0}^{3 \pi} \sin (x) d x$ using Simpson's Rule with $n=6$, i.e. compute S_{6}. It may help to know that $\frac{2 \pi}{3} \approx 2.1$.
(c) The exact value of the integral above is $\int_{0}^{3 \pi} \sin (x) d x=2$. How large must n be for the Trapezoid rule approximation T_{n} to satisfy $\left|E_{T}\right| \leq\left(2-S_{n}\right)$? It may help to know that $\frac{10(3 \pi)^{3}}{12} \approx 697.64$ and $\sqrt{697.64} \approx 26.41$.
8. Does the integral

$$
\int_{1}^{\infty} \frac{\sin ^{2}(x)}{x^{2}+\sqrt{x}} d x
$$

converge or diverge?
9. Does the integral

$$
\int_{1}^{\infty} \frac{3 d x}{2 x \sqrt{4+5 x}}
$$

converge or diverge? If it converges, what is it's value? It may help to know that $\lim _{t \rightarrow \infty} \frac{\sqrt{4+5 t-2}}{\sqrt{4+5 t+2}}=1$.
10. Find the length of the curve $y=\ln (\sec (x))$ from $x=0$ to $x=\frac{\pi}{4}$.
11. Find the length of the curve

$$
y=\frac{x^{3}}{6}+\frac{1}{2 x}
$$

between the points $\left(\frac{1}{2}, \frac{31}{24}\right)$ and ($1, \frac{2}{3}$).

