Exam \#2 Reference Table

I. Trigonometric Identities

1. $\tan ^{2} \theta+1=\sec ^{2} \theta$
2. $\cot ^{2} \theta+1=\csc ^{2} \theta$
3. $\sin ^{2} \theta=\frac{1}{2}[1-\cos (2 \theta)]$
4. $\cos ^{2} \theta=\frac{1}{2}[1+\cos (2 \theta)]$
5. $\sin \theta \cos \theta=\frac{1}{2} \sin (2 \theta)$
6. $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
7. $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
8. $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

II. Error Estimates for Numerical Integration

The expressions below give an upper bound for approximations to $\int_{a}^{b} f(x) d x$ using the trapezoid rule, the midpoint rule, and Simpson's rule. In the expressions below K is a number such that $\left|f^{\prime \prime}(x)\right| \leq K$ for $a \leq x \leq b$ and M is a number such that $\left|f^{(4)}(x)\right| \leq M$ for $a \leq x \leq b$. The number n represents the number of subintervals into which $[a, b]$ is divided.

$$
\begin{aligned}
& \left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \\
& \left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}} \\
& \left|E_{S}\right| \leq \frac{M(b-a)^{5}}{180 n^{4}}
\end{aligned}
$$

