Concepts of Mathematics Final Exam (Version A) December 13, 2007

Please circle your section:

Prasad Chebolu	Prasa	d Chebolu	Emily Allen	James Qi	Tori Noquez
Section A	Sec	ction B	Section C	Section D	Section E
Kim W	Veston	Dan Tasse	Ben Wolf	Brian Krauss	Z
Sectio	on F	Section G	Section H	Section I	

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Bonus	3	
Total	83	

1. You do not have to justify or explain your answers to the following questions.

(a) (2 pts.) Let α , β and γ be the solutions of the equation

$$x^3 - 9x^2 - 4x + 36 = 0.$$

Find $\alpha + \beta + \gamma$ without solving the equation.

$$\alpha + \beta + \gamma = 9.$$

(b) (2 pts.) Let $S = \{1, 2\}$. What is the power set $\mathcal{P}(S)$?

$$\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$

(c) (2 pts.) In how many ways can the letters of **ANTANANARIVO** be rearranged?

$\frac{12!}{4!3!}.$

(d) (2 pts.) How many congruence class solutions modulo 6 does the equation $9x \equiv 3 \pmod{6}$ have?

Three solutions.

(e) (2 pts.) What is the last digit of 9^{100} ?

The last digit is 1.

2. (10 pts.) Prove that for all natural numbers n > 2 we have that

$$3^n > 4n + 5.$$

Base Case: When n = 3, we have that $3^3 = 27 > 4 \cdot 3 + 5 = 17$.

Induction Hypothesis: Suppose that for some integer k > 2 we have that

$$3^k > 4k + 5. \; (*)$$

Want to prove: $3^{k+1} > 4(k+1) + 5$, that is $3^{k+1} > 4k + 9$.

By multiplying both sides of (*) by 3 we get $3^{k+1} > 12k + 15$. Thus it is enough to prove that $12k + 15 \ge 4k + 9$ when k > 2. Notice that $12k + 15 \ge 4k + 9$ is equivalent to $8k + 6 \ge 0$, which is true when k > 2. Thus $3^{k+1} > 12k + 15 \ge 4k + 9$ and $3^{k+1} > 4k + 9$.

3. Define $f : \mathbb{Z}^2 \to \mathbb{Z}$ by $f(x, y) = x^2 + 3y$.

(i) (5 pts.) Is f an injection? Supply a proof or counterexample.

The function f is not injective. For example, f(2,0) = f(1,1).

(ii) (5 pts.) Is f a surjection? Supply a proof or counterexample.

The function f is not surjective. We will prove it by contradiction.

Suppose f is surjective, then there exist integers x and y such that $x^2 + 3y = 2$. So $x^2 = -3y + 2$, which means that $x^2 \equiv 2 \pmod{3}$.

Notice that if $x \equiv 0 \pmod{3}$, then $x^2 \equiv 0 \pmod{3}$. If $x \equiv 1 \pmod{3}$, then $x^2 \equiv 1 \pmod{3}$. If $x \equiv 2 \pmod{3}$, then $x^2 \equiv 1 \pmod{3}$.

Thus $x^2 \equiv 2 \pmod{3}$ is not possible and so f is not surjective.

4. (10 pts.) Prove the following summation formula by counting a set in two ways.

$$\sum_{i=0}^{n} \binom{i+2}{i} = \binom{n+3}{n}.$$

Be very explicit.

Let
$$S = \{x_1, x_2, x_3, \dots, x_n, x_{n+1}, x_{n+2}, x_{n+3}\}.$$

 $\binom{n+3}{n}$ counts the number of *n* element subsets of *S*.

 $\binom{i+2}{i}$ counts the number of n element subsets A of S such that the element with the largest index in S - A is x_{i+3} . As i varies from 0 to n, the sum $\sum_{i=0}^{n} \binom{i+2}{i}$ counts all possible n element subsets of S.

5. (10 pts.) Suppose that the integers m, n and k satisfy the equation

$$n^2 + m^2 = k^2.$$

Prove that if k is divisible by 3, then both m and n are divisible by 3.

If $x \equiv 0 \pmod{3}$, then $x^2 \equiv 0 \pmod{3}$. If $x \equiv 1 \pmod{3}$, then $x^2 \equiv 1 \pmod{3}$. If $x \equiv 2 \pmod{3}$, then $x^2 \equiv 1 \pmod{3}$.

Thus, if $n^2 + m^2 \equiv 0 \pmod{3}$, we need that both $n \equiv 0 \pmod{3}$ and $m \equiv 0 \pmod{3}$.

6. (10 pts.) A fair six-sided die is rolled 4 times. What is the probability that each of the values 1, 2, 3 appears during the experiment? *Hint: Use the Method of Inclusion-Exclusion.*

There are many ways to solve this problem, only one is present here. Also, one didn't have to compute the exact number at the end to get full credit.

Let A_i be the event that the value *i* does not appear. We need to compute $P(A_1{}^c \cap A_2{}^c \cap A_3{}^c)$.

$$P(A_1^{\ c} \cap A_2^{\ c} \cap A_3^{\ c}) = 1 - P(A_1 \cup A_2 \cup A_3) =$$

= 1-P(A_1)-P(A_2)-P(A_3)+P(A_1 \cap A_2)+P(A_1 \cap A_3)+P(A_2 \cap A_3)-P(A_1 \cap A_2 \cap A_3) =
= 1-3 $\frac{5^4}{6^4}$ +3 $\frac{4^4}{6^4}$ - $\frac{3^4}{6^4}$ = $\frac{1}{12}$.

7. (10 pts.) There are three closed boxes on the table. The First Box has 2 red and 3 black balls, the Second Box has 3 red and 2 black balls and the Third Box has 5 red balls. A man rolls a die. If the result is 1, he opens the First Box; if the result is even, he opens the Second Box; if the result is either 3 or 5, he opens the Third Box. After that he picks a ball from the open box. What is the probability that the other four balls in the box are red given that the selected ball is red?

$$\begin{split} P(\text{Box III}|\text{red}) = \\ = \frac{P(\text{red}|\text{Box III})P(\text{Box III})}{P(\text{red}|\text{Box I})P(\text{Box I}) + P(\text{red}|\text{Box II})P(\text{Box III}) + P(\text{red}|\text{Box III})P(\text{Box III})} = \\ = \frac{1 \cdot \frac{1}{3}}{\frac{2}{5} \cdot \frac{1}{6} + \frac{3}{5} \cdot \frac{1}{2} + 1 \cdot \frac{1}{3}} = \frac{10}{21}. \end{split}$$

8. (10 pts.) Suppose that n different letters are sent to n different addresses on the same street, one to each address. A drunk mailman **randomly** delivers the letters to the n addresses on the street, one to each address. What is the expected number of letters that were received at correct addresses?

Label addresses by 1, 2, ..., n. Let X_i be the random variable that gets value 1 if the correct letter is recieved at address i; otherwise X_i is zero.

Notice that the random variable $X = X_1 + X_2 + \ldots + X_n$ gives the number of letters received at correct addresses.

By linearity of expectation $E(X) = E(X_1) + E(X_2) + \ldots + E(X_n)$.

$$E(X_i) = 0 \cdot P(X_i = 0) + 1 \cdot P(X_i = 1) = P(X_i = 1) = 1/n.$$

Thus $E(X) = n \cdot 1/n = 1$.

Extra Credit. (3 pts.) Prove that if p is a prime number, then

$$(p-1)! \equiv -1 \pmod{p}.$$

For any natural number $k \leq p-1$, the equation $kx \equiv 1 \pmod{p}$ has only one congruence class solution modulo p because k and p are relatively prime. Thus, for any natural number $k \leq p-1$, there exists a unique natural number $k' \leq p-1$ such that $kk' \equiv 1 \pmod{p}$.

Let's find all pairs of k and k' in which k = k', so $k^2 \equiv 1 \pmod{p}$. Then we have that $k^2 - 1 = (k - 1)(k + 1)$ is divisible by p, which implies that either k - 1 or k + 1 is divisible by p. Since k is a natural number such that $k \leq p - 1$, we have that either k = 1 or k = p - 1.

Thus all numbers in the set $\{2, 3, 4, \ldots, p-2\}$ can be partitioned into pairs whose product is 1 modulo p, which implies that $(p-2)! \equiv 1 \pmod{p}$. Since $p-1 \equiv -1 \pmod{p}$, we have that $(p-1)! \equiv -1 \pmod{p}$.