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My research interests are in set theory, dynamics, and universal algebra. Much
of my work has centered on structures satisfying multiplicative invariance relations.
The basic techniques used to study such structures resemble the basic techniques
used to study self-similar sets and iterated function systems, with the structures
playing the role of attractors. The work also has connections to the theory of
paradoxical decompositions and non-amenable groups.

In my thesis, I solved the cube problem for linear orders, originally posed by
Sierpiński in 1958. The problem is to determine whether there exists a linear order
that is isomorphic to its lexicographically ordered cartesian cube but is not isomor-
phic to its square. The corresponding question has been answered positively for
many different kinds of structures, including groups, rings, graphs, Boolean alge-
bras, and topological spaces of various kinds. However, the answer to Sierpiński’s
question is negative: every linear order isomorphic to its cube is already isomorphic
to its square.

Subsequently, I solved a related problem of Sierpiński’s by constructing a pair
of non-isomorphic linear orders that are both left-hand and right-hand divisors of
one another.

Currently, I am studying Cantor algebras (also called Jónsson-Tarski algebras)
and their automorphism groups. Such algebras arise naturally when considering
cube problems of the kind posed by Sierpiński, but they appear in other contexts
as well. I proved a representation theorem for such algebras that in many instances
makes their automorphism groups easier to describe.

I am also interested in paradoxical decompositions and the actions by non-
amenable groups from which they arise. A long-term goal is to understand what
can be determined about a group G from a paradoxical decomposition of a set on
which G acts.

1. Self-similar structures

Suppose that (C,×) is a class of structures equipped with an associative product.
For a given A ∈ C, a natural problem is to determine which structures in C are
invariant under left multiplication by A, that is, which structures X satisfy the
isomorphism A×X ∼= X. One of my results is that for many classes C it is possible
to completely characterize such structures. Roughly speaking, they can only be
obtained by replacing points in the infinite product Aω with structures from C, so
that tail-equivalent sequences are replaced by isomorphic structures.

To state the result precisely, we need some terminology. Given a structure A
and two sequences u, v ∈ Aω, we say u and v are tail-equivalent, and write u ∼ v,
if there exist finite sequences r, s ∈ A<ω and a tail-sequence u′ ∈ Aω such that
u = ru′ and v = su′. The tail-equivalence class of u is denoted [u].
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Tail-equivalence classes are formally the smallest subsets of Aω that are invariant
under left multiplication by A. For an arbitrary subset X ⊆ Aω, if we define A×X
as the set {au : a ∈ A, u ∈ X}, then A × X = X if and only if X is a union of
tail-equivalence classes.

This fact can be used to produce many examples of structures invariant under
left multiplication by A, as follows. Suppose that for every tail-equivalence class
[u] we fix a structure I[u] ∈ C. Let Aω(I[u]) denote the “structure” obtained by
replacing every point u ∈ Aω with I[u]. The underlying set of points in Aω(I[u]) is
{(u, x) : u ∈ Aω, x ∈ I[u]}. Depending on context, certain extra restrictions may
need to be placed on the I[u] in order to make Aω(I[u]) a sensible structure. This
“replacement” operation generalizes the usual product, since if there is a structure
Y such that I[u] = Y for all u, then Aω(I[u]) is simply Aω × Y .

Structures of this form are naturally invariant under left multiplication by A: if
X = Aω(I[u]), then A × X ∼= X under the isomorphism (a, u, x) 7→ (au, x). The
fact that structures replacing tail-equivalent points are identical is necessary for
this map to make sense.

It turns out that this is the only way to form such structures.

“Theorem”. (E.) Fix a class of structures C and a structure A ∈ C. For any
structure X, we have A ×X ∼= X if and only if X is isomorphic to a structure of
the form Aω(I[u]).

How to turn this “theorem” into a theorem depends on the class C. Here are
some examples:

Theorem 1. (E.)

a. Fix a set A. Then for any set X, there is a bijection between A ×X and
X if and only if X ∼= Aω(I[u]) for some collection of sets I[u], u ∈ Aω. This
holds even in the absence of the axiom of choice.

b. Fix a group G, and suppose X is a group such that G × X ∼= X. Then
there is a subgroup H ≤ Gω that is closed under tail-equivalence, and a
normal subgroup N E X, such that X/N is isomorphic to H.

c. Fix a topological space T . For any topological space X, we have T×X ∼= X
if and only if X ∼= Tω(I[u]), where the topology on Tω can be the product
topology, the box topology, or any intermediate topology that is “closed
under multiplication by T .”

d. Fix a linear order L and let × denote the lexicographical product. Then
for any order X, we have L×X ∼= X if and only if X ∼= Lω(I[u]) for some
collection of linear orders I[u].

An iterated function system (IFS) is a finite collection of contraction mappings
{f1, . . . , fn} on some complete metric space. A fundamental result, due to Hutchin-
son [7], is that any such system has a unique attractor. That is, there is a unique
compact set K such that K =

⋃
fi(K). Moreover, this attractor is naturally

homeomorphic to a quotient of Cantor space (on n symbols), and under this home-
omorphism each fi becomes the shift map u 7→ iu.

Theorem 1 can be viewed as an analogue to Hutchinson’s result. If A and X
are structures such that A × X ∼= X, then X can be decomposed into “A-many
copies of itself.” Hence there is a collection of mappings {fa : a ∈ A} such that for
each a ∈ A, the map fa sends X onto the ath copy of itself within itself, and we
have X =

⋃
fa(X). Moreover there is a natural isomorphism identifying X, not as
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a quotient of Cantor space, but as a replacement of Aω. Under this isomorphism
the fa become shift maps on Aω. Since there is no notion of metric, the fa are not
contractions. As a result, the iterated images of X under a sequence of these maps
need not converge to a point, as they do in the case of an IFS. However, they do
converge to a substructure (or, in certain instances, the “coset of a substructure”),
and it is possible to show that substructures associated to tail-equivalent sequences
are isomorphic.

2. Cube Problems

It is often possible that in a given class (C,×) one can find an infinite structure
X that is isomorphic to its own square. If X is isomorphic to X2, then it is also
isomorphic to X3. The question of whether the converse holds for a given class C,
that is, whether X3 ∼= X =⇒ X2 ∼= X for all X ∈ C, is called the cube problem
for C. If it has a positive answer, then C is said to have the cube property.

The cube problem is related to two other basic questions concerning the multi-
plication of structures in a given class.

1. Does A × Y ∼= X and B × X ∼= Y imply X ∼= Y for all A,B,X, Y ∈ C?
Equivalently, does A×B ×X ∼= X imply B ×X ∼= X for all A,B,X ∈ C?

2. Does X2 ∼= Y 2 imply X ∼= Y for all X,Y ∈ C?

Question 1 is called the Schroeder-Bernstein problem, and question 2 is called
the unique square root problem. Taken together, these two questions are sometimes
called the Kaplansky test problems, after Irving Kaplansky who posed them in
[11] as a heuristic test for whether a given class of abelian groups has a satisfactory
structure theory (“I do believe their defeat is convincing evidence that no reasonable
invariants exist.”). They were considered previously by Tarski [18] and Hanf [6] for
the class of Boolean algebras, and subsequently have been solved for many different
classes of structures.

If the cube problem for C has a negative answer, that is, if there exists an
X ∈ C such that X3 ∼= X but X2 6∼= X, then both the Schroeder-Bernstein problem
and unique square root problem have negative answers. In practice, it is often by
constructing such an X that these problems are solved.

If C contains no infinite structure isomorphic to its cube, then the cube property
for C trivially holds. When it does not hold trivially, typically the cube property
fails. Early on, Hanf showed [6] that there exists a Boolean algebra isomorphic to
its cube but not its square. Tarski [19] and Jónsson [9] showed the failure of the
cube property for the class of groups, as well as many other classes of algebraic
structures. In the years following, the cube property was shown to fail for a large
number of topological, algebraic, and relational classes of structures. See [1] [2] [5]
[8] [12] [13] [21] [22] [23]. My paper [3] provides a detailed list of these results and
further historical context.

It has also been shown that in rare instances the cube property holds nontrivially
(see [3]). However, historically in all such cases it is actually possible to establish
the stronger Schroeder-Bernstein property.

In his 1958 book Cardinal and Ordinal Numbers, Sierpiński posed the cube prob-
lem for the class (LO,×lex) of linear orders with the lexicographical product (see
[15], page 232). For this class, the problem is to determine whether there exists a
linear order that is isomorphic to its lexicographically ordered cube but not to its
square. As mentioned, the cube problem was subsequently solved for many other
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classes of structures, but Sierpiński’s question remained open. Still, it was known
already to Sierpiński that both of Kaplansky’s problems have negative answers for
the class of linear orders, and it seems it was expected that the cube problem also
has a negative answer.

It turns out, however, that the cube problem for (LO,×lex) has a positive answer.

Theorem 2. (E.) If X is a linear order such that X3 ∼= X, then X2 ∼= X. More
generally, for any order X and n > 1 we have Xn ∼= X =⇒ X2 ∼= X.

Thus the cube property holds for the class of linear orders despite the fact that
both the Schroeder-Bernstein property and unique square root property fail. There
are even weaker statements implying the cube property that are known to fail for
(LO,×lex)—see below. In this sense, the cube property for linear orders is closer
to failing than it is for other classes of structures for which it is known to hold.
The proof of the theorem can be found in my paper [3]. It uses crucially the
representation yielded by Theorem 1(d.).

In Cardinal and Ordinal Numbers, Sierpiński posed several other questions re-
lated to the cube problem concerning the multiplication of linear orders.

1. (Sierpiński) Do there exist non-isomorphic countable orders X and Y that
are right-hand divisors of one another? That is, do there exist countable
orders X 6∼= Y such that X ∼= A×Y and Y ∼= B×X for some orders A,B?

In other words, Sierpiński is asking for countable witnesses to the failure of the
(left-sided) Schroeder-Bernstein property. He was aware of distinct uncountable
orders that divide one another on the right. It follows from the work in my paper
[3] that the uncountability is in fact necessary.

Theorem 3. (E.) If X and Y are countable orders such that divide one another
on the right, then X ∼= Y .

A more delicate question is the following:

2. (Sierpiński) Do there exist non-isomorphic orders X and Y that are both
right-handed and left-handed divisors of one another? That is, are there
orders X 6∼= Y such that for some A0, B0, A1, B1 we have X ∼= A0 × Y ∼=
Y ×B0 and Y ∼= A1 ×X ∼= X ×B1?

As already indicated, Sierpiński was aware of examples of non-isomorphic orders
X0, Y0 that divide each other on the right. Separately he knew of non-isomorphic
orders X1, Y1 that divide each other on the left. (In other words, he was aware
of examples witnessing the failure of the left-sided Schroeder-Bernstein property,
and separately, the right-sided Schroeder-Bernstein property.) It is natural to ask
if there are distinct orders that divide each other on both sides. If there were an
order X isomorphic to X3 but not X2, then the pair X,X2 would give a positive
answer. By Theorem 2 there are no such orders, but it turns out the answer to
Sierpiński’s question is still positive.

Theorem 4. (E.) There exist non-isomorphic orders X,Y of size 2ℵ0 that divide
one another on both the left and right.

See [4]. While such orders are necessarily uncountable, it is unknown if they can
consistently have cardinality smaller than 2ℵ0 . The theorem gives further evidence
that the cube property for (LO,×lex) is “close” to being false.
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2.1. Problems and directions.

2.1.1. Sierpiński’s other problems. Two questions from Cardinal and Ordinal Num-
bers remain unresolved.

Q1. Do there exist linear orders X,Y such that X3 ∼= Y 3 but X2 6∼= Y 2?
Q2. Do there exist linear orders X,Y such that X2 ∼= Y 2 but X3 6∼= Y 3?

Sierpiński was motivated to ask these questions after seeing Morel’s examples of
non-isomorphic orders X,Y whose squares are isomorphic [14]. It does not seem
possible to adapt Morel’s construction to get positive answers for either of these
questions.

Both questions are related to a generalization of the cube problem. If, for any
fixed n > 2, it were possible to find an order X isomorphic to Xn but to none of
its intermediate powers Xk, 1 < k < n, then both Questions 1 and 2 would have
positive answers (in fact, it would be enough to have such orders for n = 5 and
n = 7). By Theorem 2 no such orders exist, but it may still be that these questions
have positive answers.

These questions, as well as those discussed in the previous section, are instances
of a much more general problem. Given a class of structures (C,×) and a semigroup
(S, ·), we say that S can be represented in C if there is a map i : S → C such that for
all a, b ∈ S, we have i(a·b) ∼= i(a)×i(b) and a 6= b implies i(a) 6∼= i(b). The statement
that there is an X ∈ C isomorphic to its cube but not its square is equivalent to the
statement that Z2 can be represented in C. It is typical that when the cube property
fails for C that it is possible to prove much more spectacular representation results.
For example, Ketonen showed that every countable commutative semigroup can be
represented in the class (BA,×) of countable Boolean algebras under the cartesian
product, and Trnková showed that every finite abelian group can be represented in
the class of compact metric spaces.

Theorem 2 is equivalent to the statement that Zn cannot be represented in
(LO,×) for any n > 1.

Q3. Which semigroups can be represented in (LO,×)?
Q4. Can any non-trivial group be represented in (LO,×)?

A complete answer to Question 3 would yield answers to Question 1, 2, and 4.
However, evidence suggests that answering Question 3 may be more difficult than
answering the corresponding question for other classes of structures. Question 4 on
the other hand seems much more tractable. By Theorem 2, if the answer to Q4 is
positive, any non-identity element in the witnessing group must have infinite order.
I am interested in working on all of these problems.

2.1.2. Algebra in an arbitrary class (C,×). My approach to the cube problem for
the class of linear orders is original in that it uses Theorem 1(d.) as a starting
point. Often, solving the cube problem for a given class (C,×) requires an ad hoc
construction, especially when the solution is negative. But Theorem 1 applies to
many different classes of structures, and it would be interesting to know if it can be
used to find a “universal construction” that solves the cube problem simultaneously
for these various classes.

Q5. Can Theorem 1 be used to solve the cube problem for other classes of
structures besides (LO,×)?
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3. Cantor algebras

Let X be an infinite set, or a singleton. A Cantor algebra is a system 〈X, ∗〉,
where ∗ : X × X → X is a bijection. We think of ∗ as a product on X. Then,
because ∗ is a bijection, every x ∈ X has a unique factorization under this product
x = x0 ∗ x1. Such algebras were originally considered by Tarski and Jónnson in
[10]. Later, Smirnov proved some fundamental facts about free Cantor algebras and
their automorphism groups [16] [17]. Automorphism groups of Cantor algebras have
arisen in other contexts. For example, the well-known Thompson group F appears
as a certain subgroup of the automorphism group of the free Cantor algebra on one
generator.

The algebraic structure of a Cantor algebra on even a single generator can be
complicated, and in studying these algebras one seeks examples that can be readily
visualized. Such examples are supplied by block algebras, which we now define.

Let C be any nonempty set, which we think of as a set of colors. Let B be any
set of functions of the form f : 2ω → C. We say that B is closed under dyadic
concatenation if whenever f, g ∈ B, there is a function h ∈ B that is “f on the
left and g on the right.” That is, for every sequence of the form 0u ∈ 2ω with a
leading 0, we have h(0u) = f(u), and for every sequence of the form 1u we have
h(1u) = g(u). We write h = f ∧ g. We say B is closed under dyadic division if
whenever f ∈ B, there are functions f0, f1 ∈ B that are the “left and right parts”
of f respectively. That is, f0(u) = f(0u) and f1(u) = f(1u) for every u ∈ 2ω. From
this it follows that f = f0 ∧ f1. If B is closed under both dyadic concatenation
and division, we say that 〈B,∧〉 is a block algebra. We think of the functions in B
as colorings of 2ω (“blocks”) that can be split in half to form new blocks, and also
reassembled half-by-half to form new blocks.

It is immediate that in any block algebra B, the concatenation operator ∧ is a
bijection of B×B with B. Hence any block algebra is a Cantor algebra. Algebraic
properties of elements in a block algebra, and of the algebra itself, are reflected in
how the elements are colored. For example, idempotent elements (that is, blocks
that split into two copies of themselves) appear as blocks of a single color. Viewing
B as a Cantor algebra, these are the elements x that factor as x ∗ x.

I showed that in fact every Cantor algebra can be realized as a block algebra.

Theorem 5. (E.) Suppose that 〈X, ∗〉 is a Cantor algebra. Then there is a block
algebra 〈B,∧〉, on some collection of colors C, that is isomorphic to X.

Hence, in studying Cantor algebras one may deal only with the more visually
available block algebras without any loss of generality.

From this representation theorem it is easy to give short proofs of some of the
basic facts about Cantor algebras, originally established by longer algebraic means.

Theorem. (Jónnson-Tarski) Any two free Cantor algebras on finitely many gen-
erators are isomorphic.

Theorem. (Smirnov) Any countably generated Cantor algebra can be embedded
in an algebra with a single generator.

Theorem. (Smirnov) There is a family of 2ℵ0 pairwise non-isomorphic rigid Cantor
algebras, each on a single generator. Hence, there is no universal countable Cantor
algebra.
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3.1. Problems and directions.

3.1.1. Morphisms of Cantor algebras. Another advantage of viewing Cantor alge-
bras as block algebras is that morphisms of the algebra can be induced by maps
between sets of colors. If B is a block algebra on a set of colors C, and C ′ is another
set of colors, then any map i : C → C ′ induces a homomorphism h : B → B′, where
B′ is the block algebra obtained by recoloring the blocks in B according to the map
i. That is, for f ∈ B, we have h(f) : 2ω → C ′ is the block colored by the rule
h(f)(u) = i(f(u)), and B′ is simply {h(f) : f ∈ B}. If i is injective, then h is an
isomorphism. If moreover C ′ = C and B is closed under the recoloring i, then h is
an automorphism of the original algebra B.

Let us call morphisms induced by maps on colors color morphisms. Somewhat
surprisingly, if X is a Cantor algebra and B is the representation of X as a block
algebra obtained by the proof of Theorem 5, then all morphisms on B are color mor-
phisms. However, in this representation the blocks of B are colored in a maximally
complicated way (in a precise sense), and often the algebra X can be represented
as a block algebra on significantly fewer colors. I would like to know if there are
canonical representations of Cantor algebras as block algebras where the number
of colors used is minimal.

Q6. Given a Cantor algebra X, is there a canonical representation of X as a
block algebra which uses the minimal number of colors? Is there such a
representation in which all automorphisms are color automorphisms?

3.1.2. Characterizing the isomorphism X2 ∼= X. Theorem 5 can be viewed as an
analogue to Theorem 1(a.) where the role of the bijection f : A ×X → X is now
played by the bijection ∗ : X×X → X. It is reasonable to hope that, using Theorem
5, one could characterize, within various classes of structures, those structures that
satisfy the isomorphism X2 ∼= X, in analogy with Theorem 1(b.), (c.), and (d.).

Q7. Is it possible to characterize, for an arbitrary class of structures (C,×), the
structures X ∈ C satisfying the isomorphism X2 ∼= X? More generally, for
a fixed n > 1, is it possible to characterize the isomorphism Xn ∼= X?

4. Paradoxicality and amenability

Suppose that G is a group and X is a set on which G acts. We say that X
admits a G-paradoxical decomposition if there is a partition of X as X = A1 ∪ . . .∪
An ∪ B1 ∪ . . . ∪ Bm and a collection of group elements g1, . . . , gn, h1, . . . , hm in G
such that

X =
⋃
i

giAi =
⋃
j

hjBj .

A group G is said to be paradoxical if its action on some set X yields a G-
paradoxical decomposition of X. Equivalently, G is paradoxical if it acts paradox-
ically on itself by left multiplication. Tarski showed that a group is paradoxical if
and only if it is non-amenable.

If a group G acts paradoxically on X, then in some sense X can be split into two
copies of itself according to the action of G. The condition that X ∼= 2×X also says
that in some sense X can be split into two copies of itself, and this latter relation
is characterized by Theorem 1. While these two senses of “X can be split into two
copies of itself” are different, the proof of Theorem 1 is flexible, and yields a partial
“representation theorem” for a G-paradoxical decomposition of a set X. While this
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representation gives a lot of information about the G-paradoxical decomposition of
X, such a decomposition gives only partial information about the group G from
which it arises. I am interested in determining to what extent it is possible to
construct a group G only from the data of G-paradoxical decomposition of a set X.

Q8. Suppose that X is an infinite set, and we have a partition X = A1∪. . .∪An∪
B1∪. . .∪Bm. Suppose that f1, . . . , fn, f

′
1, . . . , f

′
m are partial injections on X

such that X =
⋃

i fiAi =
⋃

j f
′
jBj . Can the proof of Theorem 1 be used to

effectively construct a group of permutations G of X that contains elements
g1, . . . , gn extending f1, . . . , fn and h1, . . . , hm extending f ′

1, . . . , f
′
m?
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