Oh! How you proved:

Prop'n ("Modular arithmetic lemma")

Fix \(n \in \mathbb{N} \), \(a, b, k, k' \in \mathbb{Z} \). Assume \(a \equiv b \pmod{\! n} \)

Then:
1. \(a + k \equiv b + k' \pmod{\! n} \)
2. \(a k \equiv b k' \pmod{\! n} \)

Ex's:
- \(0 \equiv 21 \pmod{\! 5} \) and \(12 \equiv 2 \pmod{\! 5} \)
- So must be: \(0 + 12 \equiv 21 + 2 \pmod{\! 5} \)
- and indeed can check \(14 \equiv 23 \pmod{\! 5} \)
- \(0 \cdot 12 \equiv 21 \cdot 2 \pmod{\! 5} \) by prop'n
- and indeed: \(0 \equiv 42 \pmod{\! 5} \)
- \(1 \equiv 2 \)

Prop'n says: We can manipulate congruences \(\equiv \) like equations \(= \)

with respect to + and \(\cdot \).

E.g. if \(x, y \in \mathbb{Z} \) and \(x \equiv y \pmod{\! 7} \)

Then:
1. \(x + 3 \equiv y + 3 \pmod{\! 7} \)
2. \(3x \equiv 3y \pmod{\! 7} \)
3. \(x + 3 \equiv y + 10 \pmod{\! 7} \) since \(3 \equiv 10 \pmod{\! 7} \)
(3) Can also "reduce expressions mod n".
 e.g., \(17x + 23 \equiv 2x + 3 \pmod{5}\) for any \(x \in \mathbb{Z}\)
 Since \(17 \equiv 2 \) and \(23 \equiv 3 \pmod{5}\)

(4) Using these various manipulations we can "solve congruency".
 e.g., Find all \(x \in \mathbb{Z}\) s.t.
 \[62x \equiv x + 23 \pmod{5}\]
 Solv'n: reduce to: \(2x \equiv x + 3 \pmod{5}\)
 (since \(62x \equiv 2x\)
 \[x + 23 \equiv x + 3 \pmod{5}\])
 \[\Rightarrow 2x + (-x) \equiv x + 3 + (-x) \pmod{5}\]
 \[\Rightarrow x \equiv 3 \pmod{5}\]
 So set of solutions is \(\mathbb{Z}_5 = \{\ldots, -2, 3, 8, \ldots\}\)
 (Note: shows why subtractions are legal too: just adding a negative).

Note: division on both sides of \(=\) is not allowed in general.

Ex: \(\circ \) Fix \(x \in \mathbb{Z}\). Sps \(2x \equiv 1 \pmod{3}\)
 writing \(x \equiv \frac{1}{2} \pmod{3}\)
 is meaningless (\(\frac{1}{2} \notin \mathbb{Z}\))
2. Observe: $15 \equiv 21 \pmod{6}$

but if we "divide both sides by 3" we get:

$5 \equiv 7 \pmod{6}$

which is false.

3. Observe: $8 \equiv 22 \pmod{7}$

if we divide both sides by 2, we get: $4 \equiv 11 \pmod{7}$

which is true.

What gives? Reason: 2 has a multiplicative inverse in $\mathbb{Z}/7\mathbb{Z}$ whereas 3 has no such inverse in $\mathbb{Z}/6\mathbb{Z}$.

We'll see more later.

Exponentiation also obeys congruence:

Propn: Fix $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$ and $k \in \mathbb{N}$.

If $a \equiv b \pmod{n}$

then $a^k \equiv b^k \pmod{n}$

Def: follows immediately from mod arithmetic lemma + induction.
why: if \(a \equiv b \pmod{n} \)
then \(a^2 \equiv b^2 \pmod{n} \)

\[a^k \equiv b^k \pmod{n} \] \(\checkmark \)

Ex. 5: (i) Since \(7 \equiv 2 \pmod{5} \)
\[7^3 \equiv 2^3 \pmod{5} \]
\[= 8 \pmod{5} \]
\[= 3 \pmod{5} \]

get this we actually
computing \(7^3 \).

(ii) Find the last digit of \(2033 \cdot 719 + 27 \).

So the last digit is exactly the
remainder when divided by 10.

Observe: \(2033 \cdot 719 + 27 \equiv 39 + 7 \pmod{10} \)
\[= 27 + 7 \pmod{10} \]
\[= 34 \pmod{10} \]
\[= 4 \pmod{10} \]

= 4 \text{ last digit is 4.}

And indeed: \(2033 \cdot 719 + 27 = 1,461,754 \)
Find the remainder of 2^{34} when divided by 47.

\[
\text{So}\; \text{r} \equiv 2, 4, 8, 16, 32, 64 \equiv 47 + 17 \\
\implies 26
\]

So $26 \equiv 17 \; (\text{mod} \; 47)$

\[
\implies 2^{12} \equiv (26)^2 \equiv (17)^2 \; (\text{mod} \; 47)
\]

\[
\implies 289 \equiv 47 \cdot 6 + 7
\]

\[
\equiv 7 \; (\text{mod} \; 47)
\]

\[
\implies 2^{24} \equiv (2^{12})^2 \equiv 7^2 \; (\text{mod} \; 47)
\]

\[
\equiv 49 \; (\text{mod} \; 47)
\]

\[
\equiv 2 \; (\text{mod} \; 47)
\]

Now:

\[
2^{34} = 2^{24} \cdot 2^{12} \cdot 2
\]

\[
\equiv 2 \cdot 7 \cdot 2 \; (\text{mod} \; 47)
\]

\[
\equiv 28 \; (\text{mod} \; 47)
\]

So 28 is the remainder.
Multiplicative inverses in \(\mathbb{Z}/n\mathbb{Z} \)

Defn Fix \(n \in \mathbb{N} \), \(a \in \mathbb{Z} \). We say \(a \) has a multiplicative inverse in \(\mathbb{Z}/n\mathbb{Z} \) iff \(\exists b \in \mathbb{Z} \) s.t. \(ab \equiv 1 \pmod{n} \).

If such a \(b \) exists, we sometimes write \(b = a^{-1} \).

Not unique, but unique up to \(\equiv \)-class.

Ex: 3 has a multiplicative inverse in \(\mathbb{Z}/7\mathbb{Z} \) since \(3 \cdot 5 = 15 \equiv 1 \pmod{7} \).

Propn Fix \(n \in \mathbb{N} \), \(a \in \mathbb{Z} \). Then \(a \) has a mult. inv. in \(\mathbb{Z}/n\mathbb{Z} \) iff \(\gcd(a, n) = 1 \).

Pf: \((\Rightarrow)\) assume \(\exists b \in \mathbb{Z} \) s.t. \(ab \equiv 1 \pmod{n} \)

- then \(n \mid 1 - ab \)
- i.e. \(\exists k \in \mathbb{Z} \) \(kn = 1 - ab \)
- so \(kn + ab = 1 \)
- hence 1 is a linear combo of \(a, n \)

\(\Rightarrow \) \(\gcd(a, n) = 1 \) by Bezout.
\(\iff\) Now suppose \(\gcd(a, n) = 1\).

Then, by Bezout, \(\exists b, k \in \mathbb{Z}\) s.t.
\[ab + nk = 1\]
so
\[nk = 1 - ab\]
\[\Rightarrow n \mid 1 - ab \Rightarrow ab \equiv 1 \pmod{n}\]

\text{Ex's:} \(\iff 5x \equiv 1 \pmod{21}\)

has a solution, since \(\gcd(5, 21) = 1\).

Indeed \(x = 17\) works since
\[5 \cdot 17 = 85 = 34 + 1 \equiv 1 \pmod{21}\]

Any \(x \equiv 17 \pmod{21}\) must also work, e.g. \(x = -4, 38\) - work too.

Check: \(5(-4) = -20 = 21(-1) + 1\)
\[\equiv 1 \pmod{21}\]

\(\iff\) In fact: \(\{17\}\) must be exactly: \([17]_n\): if \(x \in [17]_{21}\)

then \(5x \equiv 5 \cdot 17 \equiv 1 \pmod{21}\)

and if \(5x \equiv 1 \pmod{21}\) then \(5x = 5 \cdot 17 \pmod{21}\)
\[\Rightarrow 17 \cdot 5x \equiv 17 \cdot 5 \cdot 17 \Rightarrow x \equiv 17\)
So might work:
\[(5)_{21} \cdot (7)_{21} = (1)_{21} \]
In the sense that
\[a \in (5)_{21}, \quad b \in (7)_{21}, \quad \text{we have } ab \equiv 1 \pmod{21} \]
i.e. \(ab \equiv 1_{21} \)

2 The congruence \(6x \equiv 1 \pmod{21} \)
has no solution: such an \(x \) would be a mult inverse for \(6 \) in \(\mathbb{Z}/21\mathbb{Z} \):
but \(\gcd(6,21) = 3 \neq 1 \) so no such inverse exists.

3 Find all solutions to:
\[4x \equiv 5 \pmod{7} \]
Solution: since \(7 \) is prime and \(7 \nmid 4 \)
we have \(\gcd(4,7) = 1 \). Hence \(4 \) has a mult. inv. in \(\mathbb{Z}/7\mathbb{Z} \). Indeed
2 works: \(4 \cdot 2 = 8 \equiv 1 \pmod{7} \).
Idea: Instead of "dividing both sides" of \(4x \equiv 5 \pmod{7}\) by \(4\),

\(\) can multiply by \(2\):

\[
4x \equiv 5 \pmod{7}
\]

\[
2 \cdot 4x \equiv 2 \cdot 5 \pmod{7}
\]

\[
x \equiv 10 \pmod{7}
\]

\[
\equiv 3 \pmod{7}
\]

(and \(\Rightarrow\)'s can be reversed - why?)

Hence \(\{3\}\) is the set of solutions.

Prop'n: For a given \(n \in \mathbb{N}\) and \(a,b \in \mathbb{Z}\),

\(\) there is a sol'n to \(ax \equiv b \pmod{n}\)

If \(\gcd(a,n) \mid b\).

PF: Let \(\gcd(a,n) = d\)

\(\) Assume there is a sol'n \(x = e\)

to \(ax \equiv b \pmod{n}\), i.e. \(ae \equiv b \pmod{n}\)

then \(n \mid b - ae\)

\(\) \(\exists k \in \mathbb{Z} \quad b - ae = ak\)

\(\) \(b = ae + nk\)
but a, n are both divisible by d, hence b is too.

i.e. d | b, i.e. gcd(a, n) | b.

(\Rightarrow) Now assume d | b, i.e. \exists k \in \mathbb{Z},

b = kd.

By Bezout's \textit{Th,} k \in \mathbb{Z},

ak + nk'k = d

\Rightarrow ak + nk'k = ld = b

\Rightarrow nk'k = b - ak

\Rightarrow n | b - ak

\Rightarrow n | b - ak

\Rightarrow \text{gcd}(n) | b

\Rightarrow x = k \in \mathbb{Z} \text{ s.t. } \text{gcd}(n) | b \Rightarrow x = b \text{ (mod } n)\]