Again we have strict containment in this case.

\[\text{Imp(PreImp}(y)) = 113 \land [2,1] = y. \]

\underline{Junctions:} \quad \text{We have } A = \{1,2,3\}

\[B = \{\ast, 0\} \]

\[C = \{1, 2\} \]

\[D = \{\ast, 0, \Delta\} \]

\underline{Define}

\[g: A \rightarrow B \]

\[h: C \rightarrow D \]

\[j: A \rightarrow D \]

\underline{by:}

\[g = \{(1, \ast), (2, 0), (3, \ast)\} \]

\[h = \{(1, \ast), (2, 0)\} \]

\[j = \{(1, \ast), (2, 0), (3, \Delta)\} \]

\[A \quad B \]

\[1 \quad 2 \quad 3 \]

\[C \quad D \]

\[1 \quad 2 \quad 3 \]

\[A \quad D \]
Def: A function $f: A \rightarrow B$ is **surjective** (or **onto**, or **a surjection**) iff $\text{Im} f = B$.

i.e., iff

$$(\forall b \in B)(\exists a \in A)(f(a) = b)$$

- ex'g and j above are surjective
- h is not, since $A \notin \text{Im}_h$

Proving surjectivity:

Ex: 1) Define $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(mn) = mn$.

Claim: f is surjective

PF: WTS $(\forall x \in \mathbb{Z})(\exists (a,b) \in \mathbb{Z} \times \mathbb{Z})(f(a,b) = x)$

- So fix $x \in \mathbb{Z}$
- observe $f(c,x) = c + x = x$
- hence $f(c,x) \in \mathbb{Z} \times \mathbb{Z}$ s.t. $f(c,x) = x$ namely $(c,x) = (c,x)$
- Since x was arbitrary, claim is proved!
2. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = 2x + 1$.

 Claim: f is surjective

 PF: Fix $y \in \mathbb{R}$.
 - Let $x = \frac{y-1}{2}$
 - Then $f(x) = f\left(\frac{y-1}{2}\right) = 2\left(\frac{y-1}{2}\right) + 1 = y$
 - Since y was arbitrary, claim is proved.

3. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$.

 Claim: f is not surjective

 PF: Let $(\forall y \in \mathbb{R}) (\exists x \in \mathbb{R}) (f(x) = y)$
 - i.e. $(\forall y \in \mathbb{R}) (\forall x \in \mathbb{R}) (f(x) \neq y)$
 - Let $y = -1$: Then fix $x \in \mathbb{R}$.
 - Observe $f(x) = x^2 \geq 0 > -1$
 - $\Rightarrow f(x) \neq -1$.

 Hence, since x was arbitrary,
 $(\forall x \in \mathbb{R}) (f(x) \neq -1)$

 Hence, $-1 \notin \operatorname{Im} f \Rightarrow f$ is not surjective.
Def: a function \(F : A \rightarrow B \) is **injective** (or one-to-one, or 1-1, or an injection), if

\[(\forall x, y \in A) \quad (f(x) = f(y) \Rightarrow x = y)\]

Equivalently:

\[(\forall x, y \in A) \quad (x \neq y \Rightarrow f(x) \neq f(y))\]

"distinct inputs map to distinct outputs"

Ex's - \(g \) above is **not** injective since \(1 \neq 3 \) but \(g(1) = g(3) = * \)

- \(h, j \) are injective.

Proving Injectivity

Two approaches: Fix \(x, y \in A \) and either:
- Assume \(f(x) = f(y) \), prove \(x = y \)
- Assume \(x \neq y \), prove \(f(x) \neq f(y) \)

Ex's

Consider again \(F : \mathbb{R} \rightarrow \mathbb{R} \)

defined by \(f(x) = 2x + 1 \).

Claim: \(F \) is injective.

Pf: - fix \(x, y \in \mathbb{R} \)
- assume \(f(x) = f(y) \)

\(- \)
-1.e. 2x + 1 = 2y + 1
\Rightarrow 2x = 2y
\Rightarrow x = y \checkmark \text{ since } x, y \text{ arbitrary, claim is proved.}

2. Define \(F : \mathbb{N} \to \mathbb{N} \) by \(F(n) = n^2 \)

Claim: \(F \) is injective.

Proof: Fix \(n, m \in \mathbb{N} \) and suppose \(n \neq m \)

WTS: \(F(n) \neq F(m) \)

Two cases:
1. \(m < n \)
2. \(n < m \)

If 1: Since \(n, m \) both positive, we can square both sides of inequality to get:
\[m^2 < n^2 \]

So in particular \(F(m) \neq F(n) \)

If 2: Similar.

Since \(n, m \) were arbitrary, claim is proved.
Define: \(f: \mathbb{Z} \to \mathbb{Z} \) by \(f(n) = n^2 \)

Claim: \(f \) is not injective

PF: \(f(-2) = f(2) = 4 \)
\[\text{but } -2 \neq 2 \]

Def'n: A function \(f: A \to B \) is **bijective** (or a **bijection**) iff \(f \) is both injective and surjective.

Ex's:
- \(g \) above is not bijective
 (surjective, but not injective)

- \(h(n) = n \)
 (injective, but not surjective)

- \(j \) is bijective

Proving bijectivity:

Ex's:
- Consider again \(f: \mathbb{R} \to \mathbb{R} \)
 defined by \(f(x) = 2x + 1 \).

Claim: \(f \) is bijective

Pf: we've already shown \(f \) is both
injunctive and surjective.
A spacy one: define \(f : \mathbb{Z} \rightarrow \mathbb{N} \) by:

\[
f(n) = \begin{cases}
2n & \text{if } n > 0 \\
2(-n) + 1 & \text{if } n \leq 0
\end{cases}
\]

Claim: \(f \) is bijective.

Proof (surjectivity):
- Fix \(n \in \mathbb{N} \)
- If \(n \) is even, then \(n = 2k \) for some \(k \in \mathbb{N} \) (hence \(k > 0 \))
- Hence \(f(k) = 2k = n \)
- If \(n \) is odd, then \(n = 2k + 1 \) for some \(k \in \mathbb{N} \cup \{0\} \)
 (hence \(k \geq 0 \), hence \(-k \leq 0 \))
 - Hence \(f(-k) = 2k + 1 = n \)
In either case: \((\exists x \in \mathbb{Z}) f(x) = n\)

- hence \(F\) is surjective \(\checkmark\)

\(^{58}\)

Injectivity
- Fix \(n, m \in \mathbb{Z}\) and assume \(n \neq m\).
- We will \(F(n) \neq F(m)\)
- We will assume \(n < m\), since case when \(m < n\) is similar.

Case 1: \(0 < n < m\).
- then \(F(n) = 2n < 2m = F(m)\)
- hence \(F(n) \neq F(m)\)

Case 2: \(n < m \leq 0\).
- then \(F(n) = 2(-n) + 1\)
 \(F(m) = 2(-m) + 1\)
- observe: since \(n < m\)
 \[\begin{align*}
 -n &> -m \\
 2(-n) + 1 &> 2(-m) + 1
 \end{align*}\]
- i.e. \(F(n) > F(m)\)
- hence \(F(n) \neq F(m)\).

Case 3: \(n \leq 0 < m\)
- then \(F(n) = 2(-n) + 1\) is odd
 \(F(m) = 2m\) is even.
- hence $f(n) \neq f(m)$ in this case as well.
- hence in all cases $f(n) \neq f(m)$
- since n,m were arbitrary, we've proved F is injective
- hence F is bijective

Compositions:

Def'n: Sup $F: A \rightarrow B$ and $g: B \rightarrow C$ are functions. The composition of F and g, denoted $g \circ f$, is defined by:

$$(x \in A) \quad g \circ f(x) = g(F(x))$$

Observe: So defined, we see that $g \circ f$ is a function from A to C.