Ex: Q: For which \(n \in \mathbb{N} \) do we have \(n! > 2^n \)? Let's see…

\[
\begin{array}{c|c|c}
 n & n! & 2^n \\
\hline
 1 & 1 & 2 \\
 2 & 2 & 4 \\
 3 & 6 & 8 \\
 4 & 24 & 16 \\
 5 & 120 & 32 \\
\end{array}
\]

Seems like if \(n \geq 4 \) then \(n! > 2^n \). Let's prove.

Prop'n: For every \(n \in \mathbb{N} \) with \(n \geq 4 \) we have \(n! > 2^n \)

(here \(n_0 = 4 \) and \(S = \{ n \in \mathbb{Z} \mid n \geq 4 \} = \{ 4, 5, 6, \ldots \} \))

Pf: Let \(P(n) \) be the prop'n "\(n! > 2^n \)".

(BC) \(P(4) \) holds since \(4! > 2^4 \)

\[
2^4 = 16
\]

(\(\star \)) Fix \(n \in \mathbb{N} \), \(n \geq 4 \) [\(\text{NOTE: we fix } n \geq 4, \text{ not } n > 4 \)] and assume \(P(n) \) holds

i.e. assume \(n! > 2^n \).
(15) Then we have:

\[(n+1)! = n! \cdot (n+1)\]

\[> 2^n \cdot (n+1) \quad (\text{by IH})\]

\[> 2^n \cdot 2 \quad (\text{since } n \geq 4, \quad n+1 \geq 5 > 2)\]

\[= 2^{n+1}\]

We've shown \((n+1)! > 2^{n+1}\), i.e. \(P(n+1)\) holds.

By induction, we've proved for every \(n \geq 4\) we have \(n! > 2^n\).

Induction w/ Jumps

-Sometimes we want to prove \(P(n)\), not for all \(n\), but when \(n\) is even, or... when \(n\) is odd, or... when \(n\) is a multiple of 3, etc.

We can still argue inductively.

Thus let \(P(n)\) be a var prop'n. Fix \(n_0 \in \mathbb{Z}\) and \(K \in \mathbb{N}\). (\(n_0 = \text{"starting point"}\))

Let \(S = \{n_0, n_0 + K, n_0 + 2K, \ldots\} \).
If we have

1. \(P(n) \)
2. \((\forall n \in \mathbb{N}) \ (P(n) \implies P(n+2)) \)

Then

\((\forall n \in \mathbb{N}) \ P(n) \) holds.

E.g. if \(S = \{2, 4, 6, \ldots \} = \mathbb{E} \) and we can show

1. \(P(2) \)
2. If \(P(n) \), then \(P(n+2) \)

then we've proved \(P(n) \) holds \(\forall n \in \mathbb{E} \).

Ex: Consider the alternating sum of the first \(n \) squares

\[1^2 - 2^2 + 3^2 - 4^2 + \ldots + (-1)^n n^2 \]

\[= \sum_{k=1}^{n} (-1)^{k-1} k^2 \]

Prop'n 1. If \(n \) is odd we have:

\[\sum_{k=1}^{n} (-1)^{k-1} k^2 = \sum_{k=1}^{n} k \ (\text{by before}) \]

Prop'n 2. If \(n \) is even, we have:

\[\sum_{k=1}^{n} (-1)^{k-1} k^2 = -\sum_{k=1}^{n} k \]
Proof: where \(n_0 = 1 \) and jump = 2, so that
\[s = \{1, 3, 5, \ldots \} \]
\[\sum_{k=1}^{n} (-1)^{k-1} k^2 = \sum_{k=1}^{n} k^n \]

(CBC) (For \(n = 1 \)) \[\sum_{k=1}^{1} (-1)^{k-1} k^2 = 1^2 = 1 = \sum_{k=1}^{1} k \]

So \(P(1) \) holds.

(iii) Fix \(n \in \{1, 3, 5, \ldots \} \) and assume \(P(n) \),

1. Assume
\[\sum_{k=1}^{n} (-1)^{k-1} k^2 = \sum_{k=1}^{n} k^n \]

(ii) now consider the \(n+2 \) sum:
\[\sum_{k=1}^{n+2} (-1)^{k-1} k^2 = \sum_{k=1}^{n} (-1)^{k-1} k^2 + (-1)^{n+1} (n+1)^2 + (-1)^{n+2} (n+2)^2 \]

\[= \sum_{k=1}^{n} (-1)^{k-1} k^2 - (n+1)^2 + (n+2)^2 \]

\[= \sum_{k=1}^{n} k^n - (n+1)^2 + (n+2)^2 \]

\[= \sum_{k=1}^{n} k^n - (n+1)^2 + (n+2)^2 \]

\[= \sum_{k=1}^{n} k^n + \frac{1}{2} \left[(n+2)^2 - (n+1)^2 \right] \left[(n+2) + (n+1) \right] \]

\[= \sum_{k=1}^{n} k^n + (n+1) + (n+2) \]

\[= \sum_{k=1}^{n} k^n + \sum_{k=1}^{n+2} k \]

\[= \sum_{k=1}^{n+2} k \]

So \(P(n+2) \) holds.
By induction we've proved, and \(1, 3, 5, \ldots \)
\[
\sum_{k=1}^{n} (-1)^{k-1} k^2 = \sum_{k=1}^{n} k
\]

Summary: we showed

1. \(P(1) \) holds
2. If \(n \in \{1, 3, 5, \ldots \} \) then \(P(n) \Rightarrow P(n+2) \)

It follows: \(P(n) \) holds \(\forall n \in \{1, 3, 5, \ldots \} \)

2. For \(n \) even:

\(\text{(BE)} \) \(\text{If } n=2 \):
\[
\sum_{k=1}^{2} (-1)^{k-1} k^2 = 1^2 - 2^2 = -3
\]
\[
= -\sum_{k=1}^{2} k
\]
\[
= -\sum_{k=1}^{2} k
\]

IH Fix \(n \in \{2, 4, 6, \ldots \} \) and assume:
\[
\sum_{k=1}^{n} (-1)^{k-1} k^2 = -\sum_{k=1}^{n} k
\]

IS Now, consider:
\[
\sum_{k=1}^{n+1} (-1)^{k-1} k^2 = \sum_{k=1}^{n} (-1)^{k-1} k^2 + (-1)^{n+1} (n+1)^2
\]
\[
= -\sum_{k=1}^{n} k + (n+1)^2 - (n+2)^2
\]
\[
= -\sum_{k=1}^{n} k + (n+1)^2 - (n+2)^2
\]
\[
\Rightarrow \text{since } n \text{ even}
\]
\[
= -\sum_{k=1}^{n} k - (n+1)\frac{1}{3} [(n+1)+(n+2)]
\]
\[
= -\sum_{k=1}^{n} k - [(n+1)+(n+2)]
\]
by induction, the identity holds \(\forall n \in \mathbb{Z}, n \geq 3 \)

Fibonacci sequence: is defined recursively by:

\[F_0 = 0, \quad F_1 = 1 \]

\[F_n = F_{n-2} + F_{n-1} \quad \text{for} \quad n > 2 \]

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\(F_0, F_1, F_2, F_3, F_4, \ldots \)

→ Fib sequence is a playground for inductive proofs.

Prop’n \(\forall n \in \mathbb{N}, n > 0 \) we have:

\[\sum_{k=1}^{n} F_k = F_{n+2} - 1 \]

(i.e. \(F_0 + F_1 + \cdots + F_n = F_{n+2} - 1 \))

Pf: (B.C) if \(n = 1 \) we have:

\[\sum_{k=1}^{1} F_k = F_1 = 1 = 2 - 1 = F_3 - 1 \]
(IH) Fix $n \in N$ and assume
\[\sum_{k=1}^{n} F_k = F_{n+2} - 1 \]

(II) Consider:
\[\sum_{k=1}^{n+1} F_k = \sum_{k=1}^{n} F_k + F_{n+1} \]
\[\Rightarrow (F_{n+2} - 1) + F_{n+1} = F_{n+1} + F_{n+2} - 1 \]
\[\Rightarrow \text{def. } f_{n+1} = F_{n+3} - 1 = F_{(n+1)+2} - 1 \]

by PMI: the $N \sum_{k=1}^{n} F_k = F_{n+2} - 1$ holds.

Prop/ If n is a multiple of 3 (i.e. $n \in \{3, 6, \ldots\}$) then F_n is even.

PF (BC) if $n=3$ then $F_3 = 2$ which is even.

(IH) Fix $n \in \{3, 6, 9, \ldots\}$ and assume F_n is even.
(15) Consider \(F_{n+3} \):

\[
F_{n+3} = F_{n+2} + F_{n+1}
\]

\[
= \phi (F_{n+1} + F_n) + F_{n+1}
\]

\[
= 2F_{n+1} + F_n
\]

by the IH, \(F_n \) is even. Since \(2F_{n+1} \) is even, \(2F_{n+1} + F_n \) is even, i.e. \(F_{n+3} \) is even.

By induction, \(0, 1, 1, 2, 3, 5, 8, 13, 21, ... \) \(F_n \) is even.

Strong induction:

- In certain proofs may need to assume more than \(P(n) \) to prove \(P(n+1) \)
- E.g. may need to assume \(P(n) \) and \(P(n-1) \) ... or even \(P(n), P(n-1), ..., P(1) \).
- Still a legit induction hypothesis!

Thm (Principle of strong mathematical induction PSMI)

Sps \(P(n) \) is a variable prop'n
If
1. \(P(i) \) holds
2. \((\forall n \in \mathbb{N}) (\forall k \in \mathbb{N}) P(k) \Rightarrow P(n+1) \) holds

Then \((\forall n \in \mathbb{N}) P(n) \) holds.

"\(\forall N \)"

Template For a PSMI Proof:
1. Prove \(P(i) \)
2. Fix \(n \in \mathbb{N} \). Assume \((\forall k \in \mathbb{N}) P(k) \) (i.e. assume \(P(1), P(2), \ldots, P(n) \))
3. Deduce \(P(n+1) \)

PSMI then gives: \((\forall n \in \mathbb{N}) P(n) \) holds.

Note: Despite name, PSMI seems weaker than PMI, because we have to assume more (namely all of \(P(1), P(2), \ldots, P(n) \) instead of just \(P(n) \)) to prove \(P(n+1) \).

- But, we'll later show PMI and PSMI are equivalent (and both equivalent to another principle called wcP).
Ex: Let s_n be the sequence defined recursively by:

$$
\begin{align*}
S_0 &= 1 \\
S_n &= 1 + \sum_{k=0}^{n-1} S_k & \text{for } n \geq 1.
\end{align*}
$$

So e.g. $S_1 = 1 + S_0 = 1 + 1 = 2$

$S_2 = 1 + S_0 + S_1 = 1 + 1 + 2 = 4$

$S_3 = 1 + S_0 + S_1 + S_2 = 1 + 1 + 2 + 4 = 8$

It looks like $S_n = 2^n$

Let's prove this - we'll need a strong inductive hypothesis.

Prop'n true $\forall n \in \mathbb{N}_0$ we have $S_n = 2^n$.

PF: (BC) If $n = 0$, then $S_0 = 1 = 2^0 \checkmark$

(Strong IH) Fix $n \in \mathbb{N}_0$ and assume for every $k \in \{0, 1, \ldots, n\}$ we have $S_k = 2^k$.

(IS) now consider:
\[S_{n+1} = 1 + \sum_{k=0}^{n} S_k \]
\[= 1 + \sum_{k=0}^{n} 2^k \]

by strong IH

\[= 1 + \frac{2^{n+1} - 1}{2 - 1} \]

by geometric series formula
proved before

\[= 2^{n+1} \checkmark \]

\[\Rightarrow \text{by PSMT, } S_n = 2^n \text{ for every } n \in \mathbb{N} \setminus \{0\}. \]

Notice: we really needed a strong IH since we need to replace every term in the sum \(\sum_{k} \) by \(2^k \), not just the \(n \)-th term.

Def. Given \(n \in \mathbb{N}, n>1 \), a **prime factorization** of \(n \) is a way of writing \(n \) as a product of primes.