- can also use connectives in def'n, set-builder notation, etc.
- e.g. if \(A, B \) are subsets of a universal set \(U \), can define:
 \[
 A \cap B = \{ x \in U \mid (x \in A) \land (x \in B) \} \\
 A \cup B = \{ x \in U \mid (x \in A) \lor (x \in B) \} \\
 \complement A = \{ x \in U \mid \neg (x \in A) \}
 \]
equiv to "\(x \notin A \)"

- we'll explore connections between connectives and set operations more later.

Implication: Given statements \(P, Q \)
the statement \(P \implies Q \) is read "if \(P \), then \(Q \)" or "\(P \) implies \(Q \)"
- \(P \implies Q \) is true iff
when \(P \) is true, \(Q \) is also true.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Notice: \(\neg P \implies Q \) is always true when \(P \) is false (often a confusing point)
- \(P \implies Q \) is only false when \(P \) is true and \(Q \) is false.
Statements of the form \(P \Rightarrow Q \) are called **conditional statements**.

Ex 5

1. "\((1+1=2) \Rightarrow (1+1+1=3) \)" is **true**
 \[\frac{\text{true}}{\Rightarrow} \]

2. "\((1+1=2) \Rightarrow (1+1+1=4) \)" is **false**
 \[\frac{\text{true}}{\Rightarrow} \]

3. "\((1+1=2) \Rightarrow (1^2 \notin N) \)" is **true**
 \[\frac{\text{true}}{\Rightarrow} \]

Even though \(P \) and \(Q \) in this ex are not apparently related statements.

4. "My name is Sally \(\Rightarrow \) My name begins with \(S \)" is **true**

 \(\Rightarrow \) both the premise \(P \) and conclusion \(Q \) are **false**), but (by def'n) therefore \(P \Rightarrow Q \) is **true**

 \(\Rightarrow \) illustrates why "false \(\Rightarrow \) false" is \(\text{true} \)

5. "Tomorrow \(\Rightarrow \) Sunday \(\Rightarrow \) my name is Garrett" is also **true**

 ("false \(\Rightarrow \) true" is **true**).
6. \((\exists x \in \mathbb{R})(x^2 = -1) \Rightarrow (1 + 1 = 3)\) is **true**! Automatically since premise is false even though it's unrelated to conclusion.

7. Can also use \(\Rightarrow \) in vac. prop'w l.g.

\[x \geq 2 \Rightarrow x^2 \geq 4 \]

is a well-formed vac prop'n and

\((\forall x \in \mathbb{R})(x \geq 2 \Rightarrow x^2 \geq 4)\)

is **true**, because:

for every \(x \in \mathbb{R}\), either \(x \geq 2\), in which case \(x^2 \geq 4\). Hence \(x \geq 2 \Rightarrow x^2 \geq 4\) for such \(x\), since "true \(\Rightarrow\) true" \(\Rightarrow\) true.

or \(x < 2\), in which case \(x^2 < 4\) \(\Rightarrow\) false \(\Rightarrow\) true, since "false \(\Rightarrow\) false" \(\Rightarrow\) true.

\(\Rightarrow\) for every \(x \in \mathbb{R}\), "\((x \geq 2 \Rightarrow x^2 \geq 4)\)" \(\Rightarrow\) (T)

i.e. "\((\forall x \in \mathbb{R})(x \geq 2 \Rightarrow x^2 \geq 4)\)" is (T) as claimed.

5. **CTOH**: \((\forall x \in \mathbb{R})(x^2 \geq 4 \Rightarrow x \geq 2)\) is **false** because: there is a real number \(x\) (e.g. \(x = -3\)) s.t. "\(x^2 \geq 4\)" \(\Rightarrow\) (T) but "\(x \geq 2\)" \(\Rightarrow\) (F)

i.e. there \(x \in \mathbb{R}\) s.t. "\((x^2 \geq 4) \Rightarrow (x \geq 2)\)" \(\Rightarrow\) (F)
Equivalence: Given statements $P \land Q$ (14)
the statement $P \Leftrightarrow Q$
(read: "P if and only if Q" or "P IFF Q")
is true iff P, Q have the same truth value.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Ex.
1. $1+1=2 \Leftrightarrow (1+1=3) \vee (1)$
2. $1+1=3 \Leftrightarrow (1+1=4) \vee (1)$
3. $(\forall x \in \mathbb{N}) (x > 0) \Leftrightarrow (1+1=2) \vee (1)$

P, Q need not be "related."
4. $1+1=2 \Leftrightarrow (2+2=5) \vee (1)$

- can also use \Leftrightarrow in var. prop'n, e.g.

$\left(x > 0 \right) \Leftrightarrow \left(\exists y \in \mathbb{R} \right) \left(x = y^2 \right)$

is a legit var. prop'n, and the statement

$\left(\forall x \in \mathbb{R} \right) \left[\left(x > 0 \right) \Leftrightarrow \left(\exists y \in \mathbb{R} \right) \left(x = y^2 \right) \right]$ is True:

- why: For any fixed $x \in \mathbb{R}$, the statements "$x > 0$" and "$\exists y \in \mathbb{R} \left(x = y^2 \right)$" are either both true, or both false.
Def'n Two statements \(P, Q \) are said to be logically equivalent iff they have the same truth value, i.e. iff \(P \equiv Q \) is true.

- e.g. \(1 + 1 = 2 \) and \(1 + 1 + 1 = 3 \) are logically equivalent.

- we're most interested in logically equivalent forms for connected (e.g. negated) and quantified statements.

Negating Quantified Statements

- Sp: \(P(x) \) is a var prop'n and \(S \) a set.
- Consider the negated statements:
 1. \(\neg \exists x \in S \ P(x) \)
 2. \(\neg \forall x \in S \ P(x) \)

- Observe: 1. is true iff there \(u \) an \(x \in S \) s.t. \(P(x) \) is false, i.e. iff \(\exists x \in S \ P(x) \) is true.

 2. is true iff for all \(x \in S \) we have that \(P(x) \) is false, i.e. iff \(\forall x \in S \ P(x) \) is true.
This shows:

$$
\lnot (\forall x \in S) P(x) \iff (\exists x \in S) \lnot P(x)
$$

is always true (regardless of the property P(x))

i.e. that \(\lnot (\forall x \in S) P(x) \) and \((\exists x \in S) \lnot P(x) \) are logically equiv.

- likewise \(\lnot (\exists x \in S) P(x) \) and \((\forall x \in S) \lnot P(x) \) are logically equiv.

- these equivalences often useful when trying to prove quantified statements by contradiction.

Ex's: 0. \(\lnot (\forall x \in \mathbb{R}) (x \in \mathbb{N}) \) “not all reals are naturals” is equiv to

\((\exists x \in \mathbb{R}) \lnot (x \in \mathbb{N}) \) “there is a real which is not a natural”

(\textit{note}: we'll often write \(\lnot (x \in \mathbb{N}) \) as \(x \notin \mathbb{N} \), \(\lnot (x = y) \) as \(x \neq y \), etc.)

2. \(\lnot (\exists x \in \mathbb{R}) (x+1 = 0) \) “there is no additive inverse for \(1 \) in \(\mathbb{R} \)” is equiv to

\((\forall x \in \mathbb{R}) (x+1 \neq 0) \) “every real \(\neq \) 0 has an additive inverse in \(\mathbb{R} \)”
In this case, both statements are false.

3. For multiple quantifiers: iterate the process.

\(\forall x \in \mathbb{R} \exists y \in \mathbb{R} (xy = 1) \)

equivalent to:

\(\exists x \in \mathbb{R} \forall y \in \mathbb{R} (xy = 1) \)

equivalent to:

\(\forall x \in \mathbb{R} \exists y \in \mathbb{R} (xy \neq 1) \)

(These statements are true:

\(\exists a \) has no multiplicative inverse)

Negating connected statements:

Proposition For any statements \(P, Q \), the following logical equivalencies hold:

1. \(\neg \neg P \equiv P \)
2. \(\neg (P \land Q) \equiv \neg P \lor \neg Q \) "De Morgan's Laws"
3. \(\neg (P \lor Q) \equiv \neg P \land \neg Q \)

Proof: To prove, we'll use truth tables:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(\neg P)</th>
<th>(\neg \neg P)</th>
<th>(\neg \neg P \equiv P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>

\(\neg P \equiv P \) is always true when \(P \) is false.
Ex: ① \((1 \cdot 1 = 2)\)
Equivalent: \(1 + 1 = 2\) (both \(T\))
② \(7 ((1 + 1 = 2) \land (1 + 1 = 3))\)
Equivalent to \((1 + 1 \neq 2) \lor (1 + 1 \neq 3)\) (both \(T\))
③ \(7 ((1 + 1 = 2) \lor (1 + 1 = 3))\) (both \(F\))
Equivalent: \((1 + 1 \neq 2) \land (1 + 1 \neq 3)\)
④ \((\forall x \in \mathbb{R}) \neg ((x < 0 \land (\exists y \in \mathbb{R})(y^2 = x)))\)
⑤ \((\forall x \in \mathbb{R}) \neg ((x < 0) \lor \neg (\exists y \in \mathbb{R})(y^2 = x))\)
(all \(true\))

Equivalences for \(\Rightarrow\): Proven For any \(P \land Q\) the following equivalences hold:
① \((P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)\)
② \((P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)\)
③ \((P \Leftrightarrow Q) \Leftrightarrow (P \Rightarrow Q \land Q \Rightarrow P)\)
Proof of (i) + (ii):

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P → Q</th>
<th>T P</th>
<th>T Q</th>
<th>T P ∨ T Q</th>
<th>T Q → T P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

\[(P → Q) ↔ (T P ∨ T Q) \quad (P → Q) ↔ (T Q → T P)\]

Proof of (iii): you try.

Note: these equivalences are very useful for proving statements of the form \(P → Q \) and \(P ↔ Q \).

Negating ever → and ↔ Prop's: the following logical equivalences hold.
1. \(T(P \Rightarrow Q) \equiv (P \land \neg Q) \)
2. \(T(P \Rightarrow Q) \equiv [(P \land \neg Q) \lor (\neg P \land Q)] \)

Proof: you try.

Note: with these and our previous equivalences, we can now put any negated statement into "positive form".

Def'n A statement \(P \) is in positive form iff any negation symbols in \(P \) only occur next to substatements that contain no connecting or quantifiers (i.e. negation symbols are "as inside as possible").

Our rules above enable us to find, for any \(P \), a logically equivalent statement \(P' \) in positive form:

\[
\begin{align*}
\text{Ex's} & \quad (5 \in \mathbb{E}) \Rightarrow (6 \in \mathbb{E}) \quad \text{is equiv} \\
& \quad \text{to:} \quad (5 \in \mathbb{E}) \lor (6 \in \mathbb{E}) \\
& \quad \text{which we can write:} \quad (\neg 6 \in \mathbb{E}) \lor (6 \in \mathbb{E}) \quad (T)
\end{align*}
\]
2. \((\forall x \in \mathbb{N}) (x \in D) \Rightarrow (x+1 \in E)\)

 equiv to:

 \((\forall x \in \mathbb{N}) ((x \notin C) \lor (x+1 \in E))\)

 also equiv to:

 \((\forall x \in \mathbb{N}) ((x+1 \notin E) \Rightarrow (x \notin C))\) (T)

3. \((\forall x \in \mathbb{N}) (x \in P) \Rightarrow (x \in C)\)

 Let \(P = \{2, 3, 5, 7, \ldots\}\) denote the set of primes. Then:

 \((\forall x \in \mathbb{N}) ((x \in P) \Rightarrow (x \in C))\)

 is equiv to:

 \((\forall x \in \mathbb{N}) (((x \in P) \Rightarrow (x \in C)) \lor ((x \notin C) \Rightarrow (x \notin P)))\)

 (F).

4. Consider the following (true) statement: \((\forall x \in \mathbb{R}) [(x > 0) \Rightarrow (\exists y \in \mathbb{R}) (y^2 = x)]\)

 We'll put it in negation in positive form:

 \(\neg (\forall x \in \mathbb{R}) [(x > 0) \Rightarrow (\exists y \in \mathbb{R}) (y^2 = x)]\)

 \((\exists x \in \mathbb{R}) \neg [(x > 0) \Rightarrow (\exists y \in \mathbb{R}) (y^2 = x)]\)

 \((\exists x \in \mathbb{R}) [(x > 0) \land \neg (\exists y \in \mathbb{R}) (y^2 = x)]\)

 \((\exists x \in \mathbb{R}) [(x > 0) \land \neg (\exists y \in \mathbb{R}) (y^2 = x)]\)

 \((\exists x \in \mathbb{R}) [(x > 0) \land ((y^2 = x) \lor \neg (y^2 = x))]\)
\((\exists x \in \mathbb{R})((x > 0) \land (\forall y \in \mathbb{R})(y^2 \neq x)) \lor ((x < 0) \land (\exists y \in \mathbb{R})(y^2 = x)) \]

logically equiv. to orig. negated statement (and False)

More useful equivalency

Prop'n: The following equivalences hold:

1. \(p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \) (Association Laws)

2. \(p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r) \) (Distribution Laws)

3. \(p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \)

4. \(p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r) \)

Pf: try the truth tables!

Proving equality of sets using \(\Leftrightarrow \)

There is a strong analogy between the logical connectives and the set operations.

From Ch. 3:

<table>
<thead>
<tr>
<th>Connective</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \land q)</td>
<td>(A \cap B)</td>
</tr>
<tr>
<td>(p \lor q)</td>
<td>(A \cup B)</td>
</tr>
<tr>
<td>(p \rightarrow q)</td>
<td>(A \subseteq B)</td>
</tr>
<tr>
<td>(p \Leftrightarrow q)</td>
<td>(A = B)</td>
</tr>
<tr>
<td>(\neg p)</td>
<td>(A)</td>
</tr>
</tbody>
</table>