Number Theory

The study of the integers \(\mathbb{Z}\) and their arithmetic.

Since primes are the "multiplicative building blocks" of all integers, they play an important role.

Definitions Fix \(n \in \mathbb{N}, n > 1\)

- \(n\) is **prime** iff its only divisors are 1 and itself.
- \(n\) is **composite** iff \(\exists a, b \in \mathbb{N}, a, b > 1\) s.t. \(n = a \cdot b\).

We proved: \(n\) can be written as a product of primes.

You will prove: any such factorization is unique.

Testing Primality: How can we check whether a given \(n \in \mathbb{N}\) is prime?

- Could just try dividing by every \(k \in \mathbb{N}\).
- Can do a bit better.
Theorem: Fix $n \in \mathbb{N}$. Suppose $n = a \cdot b$ with $a, b \in \mathbb{N}$. Then either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

Proof: If $a > \sqrt{n}$ and $b > \sqrt{n}$

then $ab > n$

but $ab = n$, a contradiction.

Hence to test if a given $n \in \mathbb{N}$ is prime, only need to test for divisors k up to \sqrt{n}

Ex: Determine whether 91 or 97 are prime.

Solve: $-9 < \sqrt{91} < \sqrt{97} < 10$

- so only need to test prime divisors up to 9.

91: $2, 91, 3, 91, 5, 91$, but 7 divides 91

so 91 is not prime.

97: $2, 97, 3, 97, 5, 97, 7, 97$

so 97 is prime.
Divisors

Note: by convention, every $n \in \mathbb{Z}$ divides 0, since $0 = 0 \cdot n$.

Def’n: Fix $m,n \in \mathbb{Z}$, not both 0. The greatest common divisor of m,n, written $\gcd(m,n)$, is the largest natural number d dividing both m and n.

Ex: $\gcd(42,60) =$

Divisors of 42: $\{\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42\}$

Divisors of 60: $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 10, \pm 12, \pm 15, \pm 20, \pm 30, \pm 60\}$

Common divisors: $\{\pm 1, \pm 2, \pm 5, \pm 6\}$

$\Rightarrow \gcd(42,60) = 6$.

(2) $\gcd(42,0) = 42$
(42 is largest divisor of 42 and everything divides 0)

(3) $\gcd(-42,60) = 6$.
Thus: Fix $m, n \in \mathbb{Z}$ and let $d = \gcd(m, n)$. Then $\gcd\left(\frac{m}{d}, \frac{n}{d}\right) = 1$

Proof: Let $a = \gcd\left(\frac{m}{d}, \frac{n}{d}\right)$
- Then $a | \left(\frac{m}{d}\right)$
 - i.e. $\exists k \in \mathbb{Z}$ s.t. $ak = \frac{m}{d}$
 - hence $(ad)k = m$
 - hence $ad | m$
 - Similarly $\exists k \in \mathbb{Z}$ s.t. $ak = \frac{n}{d}$
 - hence $a | (kd)k = n$
 - hence $a | d$
- Since $a > 1$ and ad, d are common divisors of m, n, must have $ad = d$
- Hence $a = 1$ as claimed.

Ex: $\gcd\left(\frac{42}{6}, \frac{60}{6}\right) = \gcd(7, 10) = 1$
The Euclidean Algorithm will give us an efficient way of computing gcds. Hence, we need some preliminary results.

Thus (Division algorithm)
Fix \(a, b \in \mathbb{Z} \) with \(a > 0 \). Then there exist unique integers \(a, q, r \in \mathbb{Z} \) with \(0 \leq r < a \) s.t.
\[b = aq + r \]

(\(q \) is called the quotient of \(b \) when divided by \(a \); \(r \) is the remainder)

PF: Define \(S = \{ \text{the NNS of } 0 \} \)
\[\exists k \in \mathbb{Z} \quad n = b - ak \]

Observe: \(S \neq \emptyset \)
Since \(b - ak \geq 0 \)
whenever \(k \leq \frac{b}{a} \).
(So in fact \(S \) is in \(\mathbb{R} \))

\[\text{ex: if } b = 5, a = 2 \]
\[S = \{ \ldots, 5 - 3, 5 - 2, 5 - 1, \ldots \} \]
\[= \{ \ldots, 7, 5, 3, 1, \ldots \} \]
\[= \{ 11, 3, 5, 7, \ldots \} \]
- Hence by WOP, \(S \) has a least element \(r \).
- Let \(a, b \in \mathbb{Z} \) be s.t.
 \[b - aq = r. \]
- Then \(b = aq + r \).

Observe: \(r < a \).

\[r \neq 0 \text{ and } r < r. \]
- Hence \(r = a + r_1 \),
- where \(r_1 > 0 \).
- Hence \(b = aq + r_1 + r \),
- \[b = a(q+1) + r_1 \]
- \[b = a(q+1) + r \]
- \(r_1 \in S \)
- contradiction, since \(r \) was least in \(S \).

So we have proved existence of \(q,r \) s.t. \(b = aq + r \).

Now suppose \(a', r' \in \mathbb{Z} \) with \(a', r' \) and
- \(b = aq' + r' \)

WTS: \(a = a' \) and \(r = r' \)
Observe: -either \(r \geq r' \) or \(r' \geq r \).

Assume WLOG \(r \geq r' \).

Now: \(0 = b - b = aq + r - (a q' + r') \)
\[= a(q - q') + (r - r') \]

Hence \(a(q - q') = r - r' \)

Hence \(a | r - r' \)

but \(0 \leq r - r' < a \) (since \(r < a \))

Hence \(r - r' = 0 \)

i.e. \(r = r' \)

But then \(a(q - q') = 0 \)

Hence \(q = q' \)

Thus proving uniqueness.

Ex's

1. \(a = 15 \quad b = 0.7 \)

 Then
 \[0.7 = 15 \cdot 7 + 2 \]
 \[\text{So } q = 7 \quad r = 2 \]

2. \(a = 6 \quad b = -2a \)

 Then
 \[-2a = 6(-8) + 1 \]
 \[q = -8 \quad r = 1 \]
(3) \(a = 3 \quad b = 12 \)

Then
\[
\begin{align*}
 b &= 3 \cdot 4 + 0, \\
 r &= 0
\end{align*}
\]

Next theorem lies at the base of a lot of results on divisibility.

Theorem (Bezout)

Fix \(a, b \in \mathbb{Z} \) (not both 0) and let \(d = \gcd(a, b) \).

Then there exist integers \(m, n \in \mathbb{Z} \) s.t.

\[
d = am + bn
\]

(i.e. \(d \) can be written as a "linear combination" of \(a \) and \(b \))

and \(d \) is the least natural number that can be so written.

Before proof, example:

- \(\gcd(6, 15) = 3 \)
- Thus says: \(\exists m, n \in \mathbb{Z} \)

s.t. \(6m + 15n = 3 \)
and indeed if \(m = -2 \) \(n = 1 \) we have
\[
6(-2) + 15(1) = 3
\]
- these integers are not unique,
 e.g.
 \[
 6 \cdot (3) + 15 \cdot (-1) = 3 \, \text{ too}
 \]
- thus also says cannot find \(\text{m} \in \mathbb{Z} \) s.t.
 \[
 6m + 15n = 2
 \]
 or \(6m + 15n = 1 \)

\[\text{Pf. cf. thm.}\]

Define \(S = \{ \text{c} \in \mathbb{N} \mid (\exists \text{m,n} \in \mathbb{Z}) (\text{c} = am + bn) \} \)

- set of (positive) linear combination of \(a \) and \(b \).

- Observe: \(S \) is not empty since \(|a| + |b| \in S \).
- Hence by WOP, \(S \) has a least \(\text{el.} \) \(\text{d} \).
- Fix \(\text{m,n} \in \mathbb{Z} \) s.t. \(d = am + bn \)
- we want to prove \(d = \gcd(a,b) \)
Claim 1: \(\text{gcd}(a, b) \)

Proof: By the division algorithm, we can write
\[
a = q \cdot d + r
\]
where \(0 \leq r < d \) (wts \(r = 0 \))

- Hence \(r = a - q \cdot d \)
 \[
 = a - q (a_m + b_n)
 = (1 - q_m)a + (-q_n)b

- Hence \(r \) is a linear combo of \(a, b \)
- we know \(r > 0 \). If \(r > 0 \) then would have ref.
- but \(r < d \), so this would contradict minimality of \(d \).
- Hence \(r = 0 \)
- Hence \(a = q \cdot d \) i.e. \(\text{gcd}(a) \)

Claim 2: \(d \) is the greatest common divisor of \(a, b \).

Proof: Suppose \(t \in \mathbb{N} \) and \(t\mid a \) and \(t \mid b \).
we will prove tld.

- we have \(\exists k, l \in \mathbb{Z} \) st. \(a = kt \) and \(b = kt \)

- hence \(d = am + bn \)
 \[= lt(m + kn) \]
 \[= t(\ell m + kn) \]

- hence \(tld, c \) claimed

- hence \(t \leq d \).

- hence \(d = \gcd(a, b) \).

Def’n Fix \(a, b \in \mathbb{Z} \). Then \(a, b \) are called **relatively prime** if \(\gcd(a, b) = 1 \)

-The following is the most commonly used instance of Bezout’s theorem

Corollary if \(a, b \in \mathbb{Z} \) are relatively prime, then \(\exists m, n \in \mathbb{Z} \) such that

\[am + bn = 1 \]

AF: immediate.
ex: ① Since \(\gcd(25, 36) = 1 \)

theorem says \(\exists m, n \in \mathbb{Z} \) s.t.

\[
36m + 25n = 1
\]

- and indeed

\[
36 \cdot 16 + 25 \cdot (-23) = 1
\]

\[
576 - 575 = 1.
\]

② - if \(p \) is prime and \(a \in \mathbb{Z} \)

then either \(p \mid a \) or \(\gcd(p, a) = 1 \).

- in particular if \(p, q \) are

distinct primes then \(\gcd(p, q) = 1 \)

so can find \(m, n \in \mathbb{Z} \) s.t.

\[
pm + qn = 1
\]

- e.g. if \(p = 7, q = 31 \)

then

\[
7 \cdot 9 + 31 \cdot (-2) = 1.
\]

One useful application of
Bezout's theorem is:

Prop'n (Euclid's lemma)

Fix \(a, b, c \in \mathbb{Z} \). If \(\gcd(ab, c) = 1 \)
and \(a \mid bc \), then actually \(a \mid c \).
Proof: Suppose \(\gcd(ab) = 1 \) and \(a \mid bc \).

- Then \(\exists t \in \mathbb{Z} \) s.t. \(at = bc \)
- By Bezout's Identity \(\exists m, n \in \mathbb{Z} \) s.t. \(am + bn = 1 \)
- Hence
 \[
 c(am + bn) = c
 \]
- \(acm + bcn = c \)
- \(acm + aln = c \)
- \(a(cm + ln) = c \)
- \(a \mid c \)

\[\checkmark \]

Corollary: Fix \(a, b, p \in \mathbb{Z} \) with \(p \) prime. If \(\gcd(ab) \) with \(p \) prime, then either \(a \mid p \) or \(b \mid p \).

Proof: If \(a \mid p \) we are done
- So suppose \(a \nmid p \)
- Then \(p \) and \(a \) are relatively prime

Why: Since \(p \) prime, \(\gcd(a, p) = 1 \) or \(p \)
- Hence \(p \nmid a \) \(p \nmid a \)
- So by Euclid's Lemma

- \(p \mid b \)
Theorem (Fundamental Theorem of Arithmetic)

Every natural number \(n \in \mathbb{N} \) can be written uniquely (up to the order of the factors) as a product of primes.

Pf: Two parts:
- **Existence:** every \(n \) can be written as a product of primes.
- **Uniqueness:** you guys.

\[
\exists! \quad \exists! \quad 200 = 2 \cdot 100 \\
= 2 \cdot 2 \cdot 50 \\
= 2 \cdot 2 \cdot 2 \cdot 25 \\
= 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \\
= 2^3 \cdot 5^2
\]

Any other product of primes that is not exactly \(2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \) will not equal 200.

2. \(289 = 17 \cdot 17 = 17^2 \)

3. \(97 = 97 \) (is prime)
We proved the following theorem day 1, but let's remember the proof (use FTA).

Theorem: There are infinitely many primes.

Proof: - Suppose not
- then there are only finitely many primes p_1, p_2, \ldots, p_n

- Define $P = p_1 p_2 \cdots p_{n+1}$

- By FTA, P has a prime factorization
- In particular, some prime p divides P
- must have $p = p_j$ for some j
- so $P = p_j k$

OTOH: $P = p_j (p_1 p_2 \cdots p_{j-1} p_{j+1} \cdots p_n) + 1$

So $p_j k = p_j M + 1$
$p_j (k - M) = 1$, hence $p_j | 1$

a contradiction
Counting divisors

Ex.: Consider

\[1800 = 2 \cdot 900 \]
\[= 2 \cdot 2 \cdot 450 \]
\[= 2 \cdot 2 \cdot 2 \cdot 225 \]
\[= 2 \cdot 2 \cdot 2 \cdot 9 \cdot 25 \]
\[= 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \]
\[= 2^3 \cdot 3^2 \cdot 5^2 \]

- If \(d \) divides \(1800 \), then any \(p^a \) in \(d \) divides \(1800 \).
- There are only possible factors of \(d \) are \(2, 3, 5 \).
- And their powers cannot exceed \(3, 2, 2 \) respectively.

i.e., if \(d \) divides \(1800 \), then
\[d = 2^k \cdot 3^l \cdot 5^m \quad \text{where} \quad 0 \leq k \leq 3, \quad 0 \leq l \leq 2, \quad 0 \leq m \leq 2 \]

We can use this observation to count the number of positive divisors of \(1800 \).
- 4 possibilities for k
- 2 poss. for l
- 3 poss. for m

So $4 \times 3 \times 3 = 36$ total possibilities for d.

List of divisors of 1200

$2^3 \times 3 \times 5^2 = 1$
$2^4 \times 3 \times 5 = 2$
$2^1 \times 3 \times 5^2 = 6$

2. Court # of divisors of 60:

$60 = 2^2 \times 3 \times 5$

So if $d|60$, $d = 2^k \times 3^l \times 5^m$

- $0 \leq k \leq 2$
- $0 \leq l \leq 1$
- $0 \leq m \leq 1$

$3 \times 2 \times 2 = 12$ possibilities
\[2^0 \cdot 3^0 \cdot 5^0 = 1 \]
\[2^0 \cdot 3^1 \cdot 5^1 = 3 \]
\[2^0 \cdot 3^1 \cdot 5^0 = 3 \]
\[2^1 \cdot 3^0 \cdot 5^0 = 2 \]
\[2^1 \cdot 3^1 \cdot 5^0 = 6 \]
\[2^1 \cdot 3^1 \cdot 5^1 = 30 \]
\[2^2 \cdot 3^0 \cdot 5^0 = 4 \]
\[2^2 \cdot 3^1 \cdot 5^1 = 20 \]
\[2^2 \cdot 3^1 \cdot 5^0 = 12 \]
\[2^2 \cdot 3^1 \cdot 5^1 = 60 \]

Modular arithmetic

Recall: if \(a, b \in \mathbb{Z} \) and \(n \in \mathbb{N} \) and \(a \equiv b \pmod{n} \) if \(n \mid b - a \).

- This is an equivalence relation.
- Denote set of equivalence classes by \(\mathbb{Z}/n\mathbb{Z} \).

\[\mathbb{Z}/n\mathbb{Z} = \{ CaJn | \text{ at }\mathbb{Z} \} \]

be previously fact next result
for granted.
Prop'n Fix $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$.

Then $a \equiv b \pmod{n}$ iff a and b have the same remainder when divided by n.

PR. By the division algorithm, there are unique integers $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ with $0 \leq r_1, r_2 < n$ such that:

\[
a = q_1n + r_1,
\]

\[
b = q_2n + r_2.
\]

Then

\[
b - a = q_2n + r_2 - (q_1n + r_1) = (q_2 - q_1)n + r_2 - r_1
\]

(\Rightarrow) Assume $a \equiv b \pmod{n}$ then $b - a = kn$ for some $k \in \mathbb{Z}$.

Hence

\[
k = (q_2 - q_1)n + r_2 - r_1
\]

\[
\Rightarrow (k - (q_2 - q_1))n = r_2 - r_1
\]

\[
\Rightarrow n | (r_2 - r_1)
\]

But $r_2, r_1 < n$ hence $-n < r_2 - r_1 < n$.

But then $n | (r_2 - r_1) \Rightarrow r_2 - r_1 = 0$.
\(r_2 = r_1 \checkmark \)

\((\Leftarrow)\) Suppose \(r_2 = r_1 \)
- then \(b-a = (q_2 - q_1)n \)
- hence \(n \parallel b-a \)
- i.e. \(a \equiv b \pmod{n} \)

Example

\[17 \equiv 37 \pmod{4} \]

Why:
\[17 = 4 \cdot 4 + 1 \]
\[37 = 4 \cdot 9 + 1 \]

So in fact both \(17 \equiv 37 \equiv 1 \pmod{4} \)

Since the only possible remainders when divided by \(n \) are 0, 1,..., \(n-1 \) they prove this property.

This fact we've been using, namely that
\[\mathbb{Z}/n\mathbb{Z} \] has exactly \(n \) elements.

\[\mathbb{Z}/n\mathbb{Z} = \{ [c_0], [c_1], ..., [c_{n-1}] \} \]
on hw you guys proved:

Prop'n Fix $n \in \mathbb{N}$ and $a, b, k \in \mathbb{Z}$.

1. If $a \equiv b \pmod{n}$ then $a + k \equiv b + k \pmod{n}$
2. If $a \equiv b \pmod{n}$ then $ak \equiv bk \pmod{n}$

Thus can be generalized slightly:

Theorem (Modular Arithmetic)

Fix $n \in \mathbb{N}$, Fix $a, b, k, k' \in \mathbb{Z}$, and suppose $a \equiv b \pmod{n}$ and $k \equiv k' \pmod{n}$

Then

1. $a + k \equiv b + k' \pmod{n}$
2. $ak \equiv bk' \pmod{n}$

Pt: you try.
Example

1. \(6 \equiv 21 \pmod{5}\)
 and \(12 \equiv 2 \pmod{5}\)

 Hence \(6 + 12 \equiv 21 + 2 \pmod{5}\)

 i.e. \(18 \equiv 23 \pmod{5}\) ✓

 and \(6 \cdot 12 \equiv 21 \cdot 2 \pmod{5}\)

 i.e. \(72 \equiv 42 \pmod{5}\) ✓

2. Fix \(x \in \mathbb{Z}\).
 Then \(x + 10 \equiv x + 3 \pmod{7}\)
 because \(10 \equiv 3 \pmod{7}\)

3. Fix \(x, y \in \mathbb{Z}\) with \(x \equiv y \pmod{7}\).
 Then \(x + 3 \equiv y + 3 \pmod{7}\)
 and \(x + 10 \equiv y + 7 \pmod{7}\)

Subtraction works too:

\(x + (-y) \equiv y + (-y) \pmod{7}\)

i.e. \(x - y \equiv y - y \pmod{7}\)

and since \(-y \equiv 3 \pmod{7}\)

could also write \(x - y \equiv y + 3 \pmod{7}\)
3. If \(x \equiv 3 \pmod{7} \)
 then \(10x \equiv 30 \pmod{7} \)
 \(\equiv 2 \pmod{7} \)

On the other hand, division on both sides is not allowed in general.

\[\text{Ex}: \text{Fix } x \equiv 2. \]
- Suppose \(2x \equiv 1 \pmod{3} \)
- Writing \(x \equiv y_2 \pmod{7} \)
 is meaningless.

2. - Observe: \(18 \equiv 21 \pmod{6} \)
 - If we "divide both sides by 2" we get
 \(9 \equiv 7 \pmod{6} \)
 - Which is false.

3. - Observe: \(8 \equiv 22 \pmod{7} \)
 - If we divide both sides by 2 we get
 \(4 \equiv 11 \pmod{7} \)
 - Which is true.

What gives?
Turns out: \(\mathbb{Z} \) has a "multiplicative inverse" in \(\mathbb{Z}/7\mathbb{Z} \) while \(\mathbb{Z}/6\mathbb{Z} \) does not have such an inverse.

(3) were on this later.

Prop'\(n \) Fix \(a, b, Z \) and \(k \in \mathbb{N} \).
If \(a \equiv b \pmod{n} \)
then \(a^k \equiv b^k \pmod{n} \)

Pf: By induction + modular arithmetic lemma.
If \(a \equiv b \pmod{n} \)
then \(a^2 \equiv b^2 \pmod{n} \)

\[a^k \equiv b^k \pmod{n} \]

Ex\(\text{'}s \) (1) Since \(7 \equiv 2 \pmod{5} \)
we have \(7^2 \equiv 2^3 \pmod{5} \)
\[\equiv 8 \pmod{5} \]
\[\equiv 3 \pmod{5} \]

(2) Find the last 4 digits of \(2033 \cdot 719 + 27 \)
Sel'n: last two digits of this number is exactly the remainder when divided by 100

observe:

\[2033 \cdot 719 + 27 \equiv 3 \cdot 9 + 7 \pmod{100} \]
\[\equiv 27 + 7 \pmod{100} \]
\[\equiv 34 \pmod{100} \]
\[\equiv 4 \pmod{10} \]

\[\Rightarrow \text{ last digit is 4} \]

and indeed

\[2033 \cdot 719 + 27 = 1461754 \]

③ Find the remainder of 257 when divided by 47.

Sel'zh:

\[2 \equiv 2 \pmod{47} \]
\[2^2 \equiv 4 \pmod{47} \]
\[(2^4) = (2^2)^2 \equiv 4^2 \equiv 16 \pmod{47} \]
\[(2^8) = (2^4)^2 \equiv 16^2 \equiv 256 \]
\[\equiv 47 \cdot 5 + 21 \]
\[2^{16} \equiv (28)^2 \pmod{47} \]
\[2^{16} \equiv 2(2) \pmod{47} \]
\[= 441 \]
\[47 - 9 + 4 \]
\[18 \pmod{47} \]
\[2^{32} \equiv (2^{16})^2 \pmod{47} \]
\[= 18^2 \pmod{47} \]
\[= 329 \]
\[= 6 \cdot 47 + 42 \]
\[= 42 \pmod{47} \]
\[\equiv -5 \pmod{47} \]

Here, \[2^{37} = 2^{32} \cdot 2^{4} \cdot 2 \]
\[= (-5) \cdot (6 \cdot 2 \pmod{47}) \]
\[= -160 \rightarrow -9 \cdot 47 + 26 \]
\[\equiv 28 \pmod{47} \]

remainder
The multiplicative inverse in \(\mathbb{Z}/m\mathbb{Z} \)

Def'n Fix me \(N \) and \(a \in \mathbb{Z}. \) Then \(a \) is said to have a multiplicative inverse in \(\mathbb{Z}/m\mathbb{Z} \) if \(\exists b \in \mathbb{Z} \) s.t. \(ab \equiv 1 \pmod{m} \).

We sometimes write \(b = a^{-1} \).

Prop'n Fix me \(N, a \in \mathbb{Z}. \) Then \(a \) has a mult. inv. in \(\mathbb{Z}/m\mathbb{Z} \) if \(a, m \) are relatively prime.

PF \((\Rightarrow) \) Assume \(\exists b \in \mathbb{Z} \) s.t. \(ab \equiv 1 \pmod{m} \).
- Then \(m \mid 1 - ab \)
- i.e. \(\exists k \in \mathbb{Z} \) s.t. \(mk = 1 - ab \)
- hence \(ab + mk = 1 \)
- Since 1 is a linear combo of \(a, m \) must have \(\gcd(a, m) = 1 \)

\((\Leftarrow) \) Assume \(\gcd(a, m) = 1 \).
- Then \(\exists b, k \in \mathbb{Z} \) s.t. \(ab + mk = 1 \).
- \(\Rightarrow mk = 1 - ab \)
- \(\Rightarrow m \mid 1 - ab \)
- \(\Rightarrow ab \equiv 1 \pmod{m} \) \(\Rightarrow b = a^{-1} \).
Ex 1 - The congruence $6x \equiv 1 \pmod{21}$ has no solution.
- such an x would be mult. inv. of 6 in $\mathbb{Z}/21\mathbb{Z}$,
- but $\gcd(6, 21) = 3 \neq 1$ so no such x exists.

@ -5x \equiv 1 \pmod{21}$ does have a solution since $\gcd(5, 21) = 1$

- $x = 17$ works since

 \[5 \cdot 17 = 85 \equiv 1 \pmod{21} \]

- 17 is not unique solution, but
 - unique up to equiv. class
 - e.g., $-4 \equiv 17 \pmod{21}$

 and $5 \cdot (-4) = -20 = (-1) \cdot 20 + 1 \equiv 1 \pmod{21}$

- set of solutions to $5x \equiv 1 \pmod{21}$ is exactly $\{17\}_n$
 - might write:

 \[\{85\}_n \cdot \{17\}_n = \{0\}_n \]

 \[\cdots \]

 \[\forall a \in \{85\}_n \forall b \in \{17\}_n \]

 \[\exists c \in \{0\}_n \]

\[a \cdot b = c \in \{0\}_n \]
3. Find all \(x \in \mathbb{Z} \) s.t. \(4x \equiv 5 \pmod{7} \)

Solve: - 7 is prime, so any \(n \in \mathbb{Z} \) not divisible by 7 is rel. prime to 7.
- so \(y \) is rel. prime to 7.
- hence \(y \) exists in \(\mathbb{Z}/7\mathbb{Z} \).
- indeed
\[
2 \cdot y \equiv 8 \equiv 1 \pmod{7}
\]
- can treat \(y \) as "division" by \(2 \pmod{7} \).

\[
\begin{align*}
8 & \cdot x \equiv 5 \pmod{7} \\
\Rightarrow & \ 2 \cdot 4x \equiv 2 \cdot 5 \pmod{7} \\
\Rightarrow & \ 8x \equiv 10 \pmod{7} \\
\Rightarrow & \ x \equiv 3 \pmod{7}
\end{align*}
\]

Hence set of solutions to \(4x \equiv 5 \pmod{7} \) is
as \(x \equiv 3 \pmod{7} \)
\[
\mathbb{Z}/7\mathbb{Z} = \{ 3 \cdot 7, -43, 10, 17, \ldots \}
\]
Prop'n Fix \(a, b \in \mathbb{Z}\) and \(n \in \mathbb{N}\).

There is a solution to \(ax \equiv b \pmod{m}\)

if \(\gcd(a, n, m) \mid b\).

\[\text{Pf.:}\] \(\text{Let } d = \gcd(a, n, m)\)

\((\Rightarrow)\) Assume \(ax \equiv b \pmod{m}\) has a solution.
- \(\Rightarrow \exists t \in \mathbb{Z} : st \cdot al \equiv b \pmod{m}\)
- \(\text{Hence } m \mid b - al\)
- \(\text{Hence } \exists k \in \mathbb{Z} \text{ such that } mk = b - al\)
- \(\Rightarrow al + mk = b\)

Now: since \(dl \mid a\) and \(dl \mid m\),
we have \(a = xd, m = yd\)

\(\Rightarrow \) \(c'dl + mk = b\)

\(\Rightarrow d(c'e + m'k) = b\)

\(\Rightarrow d \mid b\)

\((\Leftarrow)\) Assume \(d \mid b\).
- Then \(b = dl\) for some \(l \in \mathbb{Z}\).

By above, \(\exists k, k' \in \mathbb{Z} \text{ s.t. }\)
\(ak + mk' = d\)

\(\Rightarrow ak + mk' = dl = b\)
\[a + k = b - m + k \]
\[\equiv b \pmod{m} \]

\[\Rightarrow \ x = ek + 0 \text{ soln to } ax \equiv b \pmod{m} \]

Case 1:

There is a soln to
\[6x \equiv 4 \pmod{8} \]

Since \(\gcd(6,8) = 2 \)

and \(2|4 \)

Check: \(x = 2 \) works

\[6 \cdot 2 = 12 \equiv 4 \pmod{8} \]

Case 2:

There is \(\text{no soln to} \)

\[4x \equiv 3 \pmod{8} \]

Since \(\gcd(4,8) = 4 \)

and \(4 \not| 3 \).
Euclidean Algorithm

- Many of the above results depend on knowing \(\text{gcd}(a, b) \).
- How do we efficiently compute \(\text{gcd}(a, b) \)?

A: Euclidean Algorithm

Lemma Fix \(a, b, q, r \in \mathbb{Z} \).

If \(a = bq + r \)

then \(\text{gcd}(a, b) = \text{gcd}(b, r) \)

Proof: \(\text{Let } d = \text{gcd}(a, b) \)
\(\text{and } d' = \text{gcd}(b, r) \)

Observe: Since \(a = bq + r \) and \(d' \) divides both \(r \) and \(b \), we have \(d' \) divides \(a \).

Hence \(d' = d \). Greatest common divisor of \(a, b \).

Written by [Author Name] S.L.
\[rm + bn = d' \]

(\(\Rightarrow \) since \(r = a - bq \) where \((a - bq) m + bn = d' \))

\[am - bqm + bn = d' \]

\[am + b(n - bq) = d' \]

\(\Rightarrow \) \(d' \) is a linear combo of \(a, b \)

\(\Rightarrow \) again by Bezout that \(d \leq d' \)

\(\Rightarrow \) hence \(d = d' \)

\(\checkmark \)

Thus Lemma allows us to find \(\gcd(a, b) \) by repeatedly “dividing by remainders”

Theorem (Euclidean Algorithm)

Fix \(a, b \in \mathbb{N} \) with \(a > b \).

Define a finite decreasing sequence by

\[r_0 = a \quad r_1 = b \]

\[r_j = r_{j+1} q_{j+1} + r_{j+2} \]

where \(0 \leq r_{j+2} < r_{j+1} \)
If \(r_n = 0 \), define \(r_n \) as the last term in the sequence.

Then: \(r_{n+1} = \gcd(a, b) \).

Proof: Follows from Lemma b) (we skip and see examples).

Ex: 1) Find \(\gcd(68, 12) \)

\[
\begin{align*}
\text{So } \kappa_n & = 68 \quad b = 12 \\
\quad & r_0 = r_1 \\
68 & = 12 \cdot 5 + 8 \\
12 & = 8 \cdot 1 + 4 \quad r_2 \\
8 & = 4 \cdot 2 + 0 \quad r_3
\end{align*}
\]

So then says:

\[
\gcd(68, 12) = \text{last nonzero remainder} = 4
\]

Why?

By Lemma: \(\gcd(68, 12) = \gcd(12, 8) = \gcd(8, 4) = 4 \)
1.5 Find integers m, n s.t.
\[68m + 12n = 4 \]

Soln: Bezout says m, n exist.
- Euclid gives us a way to find m, n.

\[4 = 12 - 8 \cdot 1 \quad \text{but} \quad 8 = 68 - 12 \cdot 5 \]
\[= 12 - (68 - 12 \cdot 5) \cdot 1 \]
\[= 12 - 68 \cdot 1 + 12 \cdot 5 \cdot 1 \]
\[= 68 \cdot 1 + 12 \cdot 6 \]
\[= 68(-1) + 12(6) \]

So \(m = -1, n = 6 \) works.

This method of "back substitution" to find m, n is called extended Euclidean Algorithm.

2. Find \(k, \ell \in \mathbb{Z} \) s.t.
\[64k + 111 \ell = 1. \]

Soln: For this to be possible, \(\gcd(64, 111) = 1 \)
Let's do EA:

\[111 = 64 \cdot 1 + 47 \]
\[64 = 47 \cdot 1 + 17 \]
\[47 = 17 \cdot 2 + 13 \]
\[17 = 13 \cdot 1 + 4 \]
\[13 = 4 \cdot 3 + 1 \]

\[\text{gcd}(111, 64) = 1 \]
\[4 = 4 \cdot 1 + 0 \]

\[1 = 13 - 4 \cdot 3 \]
\[\text{but } 4 = 17 - 13 \cdot 1 \]

\[= 13 - (17 - 13 \cdot 1) \cdot 3 \]
\[= -17 \cdot 3 + 13 + 13 \cdot 1 \cdot 3 \]
\[= -17(3) + 13 \cdot 4 \]
\[\text{but } 13 = 47 - 17 \cdot 2 \]
\[= 47(3) + (47 - 17 \cdot 2) \cdot 4 \]
\[= 47 \cdot 4 + 17(-11) \]
\[\text{but } 17 = 64 - 4 \cdot 1 \]
\[= 47 \cdot 4 + (64 - 4 \cdot 4 \cdot 1) \cdot (-11) \]
\[= 64(-11) + 47 \cdot 4 + 47 \cdot 11 \]
\[= 64(-11) + 47(15) \]
\[\text{but } 47 = 1 \cdot 64 \]
\[= 64(-11) + (1 \cdot 64 - 64 \cdot 1) \cdot 15 \]
\[= 64(-11) + 64 \cdot (-11) + 64 \cdot (-15) \]
\[= 111(15) + 64(-26) \]

So \(k = -26 \) and \(\ell = 15 \) work.