Notice: in both examples 1 and 2, the set of equiv. classes forms a partition of the underlying set \(A \) (in 1, \(R \) in 2).

It turns out this is always the case:

Theorem: If \(R \) is an equiv. relation on \(A \), then \(A/R \) is a partition of \(A \).

PF: HW. For a hint, see 6.7.13 on pg. 449, which outlines an approach to the proof.

Partitions yield Equiv. relations

Idea: if \(P \) is a partition on \(A \), we can define an equiv. relation \(R \) on \(A \) by rule “\((x,y) \in R \) iff \(x \) and \(y \) are in some piece of partition.”

Picture:

\[(x,y) \in R \]

but \((x,z) \notin R \).
Let's prove this work:

Theorem $S_P \subseteq P$ is a partition of A.

Define a relation R_{PP} on A by:

$$(x, y) \in R_{PP} \text{ if } \exists x \in P \text{ such that } x \in x \text{ and } y \in x.$$

Then, R_{PP} is an equivalence relation.

PF: (i) (Reflexivity)
- Fix $x \in A$.
- Since P is a partition we know $U_x = A$.
- So since $x \in A = \bigcup_{x \in P} x$.
- Hence $x \in x$.
- Hence $(x, x) \in R_{PP}$.

(iii) (Symmetry)
- Fix $x, y \in A$ and suppose $(x, y) \in R_{PP}$.
- By def'n of R_{PP}, there is some $x \in P$ such that $x \in x$ and $y \in x$.
- Hence $y \in x$ and $x \in x$.
- Hence $(y, x) \in R_{PP}$.
(iii) Transitivity

- Fix $x, y, z \in A$ and suppose $(x, y) \in R_p$ and $(y, z) \in R_p$.
- Then by def'n of R_p, there is some $x \in P$ s.t. $x \in x$ and $y \in x$.
- Also, there is some $y \in P$ s.t. $y \in Y$ and $z \in Y$.
- Hence $y \in x \land y$.
- In particular, $x \land y \neq \emptyset$.
- But then $X = Y$, since P is a partition.
- Hence $x \in x \land z \in x$.
- Hence $(x, z) \in R_p$.

Ex. 5: Let $P = \{x, y, z\}$

where $X = \{\ldots, -3, 0, 3, 6, \ldots \}$
$Y = \{\ldots, -2, 1, 4, 7, \ldots \}$
$Z = \{\ldots, -1, 2, 5, 8, \ldots \}$

be our partition of \mathbb{Z} from before.

- Let R_P be the associated equiv. relation:
 $(x, y) \in R_P$ iff $\exists \varepsilon \in P$
 s.t. $x = s$ ad $y = s$.

- By our theorem, this defines an equivalence relation.
- Easy to see this is the same equiv. relation \(\equiv_2 \) that we defined previously in a different way:

\[x \equiv_2 y \text{ if } 3 \mid y - x. \]

- Notice: the equiv. classes of the relation are exactly the pieces of the partition.

2: Let \(P = \{ [1,3], [2,7,17] \} \).

- Then \(P \) is a partition of the set \(A = \{1,2,3,9,17\} \) into 2 pieces.

- Let \(R_P \) be the associated equiv. relation.

\[R_P = \{(1,3), (2,7), (3,17), (4,4), (2,7), (3,2), (2,4), (4,2), (3,4), (4,3)\} \]

- In this case we can actually write \(R_P \) as a set of ordered pairs, explicitly, in roster notation.
- No real rhyme or reason to this equiv. relation, but still a perfectly good one.

Order Relations

- another common type of binary relation is an order relation
- unlike equiv. relations order relations come in several flavors:
 - nonstrict / strict
 - partial / total.

Def: A relation \(R \) on a set \(A \) is a (nonstrict) partial order iff \(R \) is reflexive, transitive, and antisymmetric.

⇒ If \(R \) is a partial order on \(A \) we say that the pair \((A, R) \) is a partially ordered set, or poset.

Ex's: \(\leq \) is a partial order on \(\mathbb{R} \). Why? For \(x, y, z \in \mathbb{R} \) we have:

(i) \(x \leq x \) ✓
(ii) if \(x \leq y \) and \(y \leq z \) then \(x \leq z \) ✓
(iii) if \(x \leq y \) and \(y \leq x \) then \(x = y \) ✓
so \((\mathbb{R}, \leq)\) is a poset.

2. Let \(A\) be a fixed set. Then the subset relation \(\subseteq\) on \(\mathcal{P}(A)\) is a partial order.

 why: \(\forall x, y, z \in \mathcal{P}(A)\) we have:

 (i) \(x \subseteq x\)

 (ii) if \(x \subseteq y\) and \(y \subseteq z\) then \(x \subseteq z\)

 (iii) if \(x \subseteq y\) and \(y \subseteq x\) then \(x = y\)

\(\therefore\) \((\mathcal{P}(A), \subseteq)\) is a partially ordered set.

3. We showed before that the divisibility relation \(\mid\) on \(\mathbb{N}\) (i.e. \(n \mid m\) iff \(\exists k \in \mathbb{N}\) \(m = nk\)) is reflexive, transitive, and antisymmetric. Hence \((\mathbb{N}, \mid)\) is a poset.

Question is \((\mathbb{Z}, \mid)\) a poset?

We still have reflexivity and transitivity. What about antisymmetry?

If \(n \mid m\) and \(m \mid n\) do we have \(n = m\)?

\(\therefore\) Consider 2 and -2

\(2\mid-2\) and \(-2\mid 2\) but \(-2 \neq 2\).
So the divisibility relation 1 on \(\mathbb{Z} \) is reflexive, antisymmetric, hence (II) (i) is not a poset.

These examples of partial orders seem to be of different kinds — and yet, any theorems that can be proved about them using only the properties of reflexivity, transitivity and antisymmetry must be true for all of these! (and any other poset).

Strict partial orders

Defn: a relation \(R \) on \(A \) is **irreflexive** if \(\forall x \in A \) \((x, x) \notin R\).

E.g. < and \(\neq \) are irreflexive since we never have \(x = x \) or \(x \neq x \).

Defn a relation \(R \) on a set \(A \) is called a **strict partial order** if \(R \) is (i) irreflexive (ii) transitive (iii) antisymmetric.

So this is official defn, but by (ii) this is same as saying: \(R \) is antisymmetric and transitive.
Ex. 1. \((\forall x, y \in \mathbb{R}) (x, y) \in R \Rightarrow (y, x) \notin R\).

\[\exists s \quad 1 < s \text{ is a strict partial order on } \mathbb{R}.\]

Proof: \(\forall x, y, z \in \mathbb{R}\) we have:

(i) \(x \neq x\)
(ii) \(x < y \text{ and } y < z \Rightarrow x < z\)
(iii) if \(x < y\) and \(y < x\) then \(y = x\)

become always false.

By (iii) instead of checking (i) and (iii) can instead observe:

(iv) \(x < y \Rightarrow y \neq x\).

\(\exists Y \mathbb{A} \text{ be a fixed set. Then } \exists Y \text{ is a strict p.c. on } \mathbb{P}(\mathbb{A}).\)

Proof: \(\forall x, y, z \in \mathbb{P}(\mathbb{A})\)

(i) \(x \neq y \text{ and } y \neq z \Rightarrow x \neq z\)
(ii) \(X \neq Y\) then \(Y \cup \{x\} \neq \{x\}\).