Chapter 4: Intro to Mathematical Logic

Goals: learn how to write statements more formally (w/ more symbols, fewer words)
- See how: the form of a statement suggests the form of its proof.

Recall: Def'n (intuitive): A mathematical statement (or prop'n) is a grammatically correct declarative sentence that is true or false.
- May consist of words and/or symbols.
- "Statement" can be rigorously defined, but need more formal logic.
- In that context, "grammatically correct" also has precise meaning.

Ex's
1) Every integer is a real number (T)
2) Every real number is an integer (F)
3. There exists \(x \in \mathbb{R} \) s.t. \(x \notin \mathbb{Z} \) (T).
4. \(1 + 1 = 2 \) (T)
5. There are infinitely many twin primes (unknown... but either T/F).

Norrex's ① E! IT (grammatically incorrect/meaningless)
② Shakespeare (not declarative/ no truth value)
③ \(x^2 + 1 = 2 \)

→ meaningful sequence of symbols asserting an equality... but no truth value unless \(x \) is specified
- called a variable proposition:
a sentence that becomes a statement once its variables are specified (or quantified over... more on this later)

- we'll use \(P, Q, R, \ldots \) for statements and \(P(x), Q(xy) \)

for var. prop's.

E.g. might say: - let \(P \) denote "\(5^2 + 1 = 2 \)" (F)
- let \(Q(x) \) denote "\(x^2 + 1 = 2 \)"

Then \(Q(5) \) is the statement \(5^2 + 1 = 2 \) (F)
and \(Q(1) \) is \(1^2 + 1 = 2 \) (T)
Merc var. prop's :
1. $x^2 + 1 \leq 0$
2. $x \in \mathbb{Z}$ and $x^2 < 39$
3. $z = x + y$.

indicate when abbreviating a var. prop'n w/ multiple variables, e.g. could use $Q(x, y, z)$ to denote 3.

Then: $Q(1, 2, 3)$ is F
but $Q(5, 2, 3)$ is T.

Quantifiers: the other way to turn a var. prop'n into a statement is to quantify over its variables.

E.g. "$x^2 + 1 = 2$" is a var. prop'n
but "There exists $x \in \mathbb{R}$ s.t. $x^2 + 1 = 2$" is a statement (T)
as is: "For every $x \in \mathbb{R}$ we have $x^2 + 1 = 2$" (F)

The clauses "There exists $x \in \mathbb{R}$..." and "For every $x \in \mathbb{R}$..." are two types of quantification of the variable x.
- We'll use the symbols:

\[\forall \quad \exists \]

read: "For all" or "for every"
read: "there exists"

called the "universal quantifier"
called the "existential quantifier"

- Given a prop. \(P(x) \) and a set \(S \), we have that:

"For all \(x \in S \) we have \(P(x) \)"
"there exists \(x \in S \) such that \(P(x) \)"

are statements.

- We denote them by:

\[(\forall x \in S) \ P(x) \quad (\exists x \in S) \ P(x) \]

(Back way: \(\forall x \in S. \ P(x) \)
\(\exists x \in S. \ P(x) \))

respectively.

Ex's:

1. \((\exists x \in \mathbb{N}) \ (x<5) \)
 read: "there exists \(x \in \mathbb{N} \) s.t. \(x<5 \)" (T)
2. \((\forall x \in \mathbb{N}) \ (x<5) \)
 "For every \(x \in \mathbb{N} \), we have \(x<5 \)" (F)
3. \((\forall x \in \mathbb{N}) \ (x>0) \) (T)
4. \((\forall x \in \mathbb{R}) \ (x>0) \) (F)
Multiple quantifiers:

3) \((\forall x, y \in \mathbb{N})(x + y \geq 2)\)

 read: "For all \(x\) and \(y\) in \(\mathbb{N}\), we have \(x + y \geq 2\)" (T)

 - can also nest \(\forall\)'s and \(\exists\)'s, but beware: order of quantifiers is important!

6) \((\forall x \in \mathbb{N})(\exists y \in \mathbb{R})(y^2 = x)\)

 "For every \(x \in \mathbb{N}\) there is a \(y \in \mathbb{R}\) s.t. \(y^2 = x\)"

 i.e. every natural number has a real square root (T)

7) \((\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(y^2 = x)\)

 i.e. every natural \# has a square root in \(\mathbb{N}\) (F).

 - what happens if we reverse the order of quantifiers in 6?

 get:

 \((\exists y \in \mathbb{R})(\forall x \in \mathbb{N})(y^2 = x)\)

 i.e. "there is a real number \(y\) s.t. every natural number is equal to \(y^2\)"
perfectly well-written statement, but absurd and definitely false

- moral order of quantifiers makes a big deal!

it can also have "inside quantifiers" e.g.

8 \((\forall x \in \mathbb{N})(x > 0 \text{ and } (\exists y \in \mathbb{N})(y > x))\)

9 \((\forall x \in \mathbb{R})(\text{if } x > 0, \text{ then } (\exists y \in \mathbb{R})(y^2 = x))\)

are both statements (both T).

Note on quantifying set variables:

- we've insisted all quantified variables range over a specific set,
 e.g. \((\forall x \in \mathbb{R})(x^2 \geq 0)\) is meaningful
 \((\forall x)(x^2 \geq 0)\) is not

- what if we want to quantify over variables referring to sets?
 e.g. to write,

 "For every set \(S\), we have \(\emptyset \subseteq S\)"

 symbolically, might try:

 \((\forall S \in \mathcal{P} \mathfrak{S})(\emptyset \subseteq S)\)

 set of all sets??
Connectives and Truth Tables

- Connectives are symbols used to combine multiple statements into one.
- All our connectives will be binary.
- Except negation which is unary.
- Truth tables tell us how truth of connected statements depends on truth of the original constituents.

Conjunction ("and")

- Conjunction of statements P, Q is written $P \land Q$ ("P and Q").
- $P \land Q$ is true if both P, Q true.
\begin{center}
<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \land Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
\end{center}

Ex5: Let \(P \) denote:
\[(\forall x \in \mathbb{Z})(x+1 > x)\]

Let \(Q \) be:
\[97 \text{ is prime}\]

Let \(R \) be:
\[2^2 = 5\]

Then \(P, Q \) are \((T)\) but \(R \) is \((F)\).

Hence \(P \land Q \) is \((T)\)

but \(P \land R \) and \(Q \land R \) are both \((F)\).

Written out, \(P \land Q \) is:
\[(\forall x \in \mathbb{Z})(x+1 > x) \land (97 \text{ is prime})\]

\((\text{inserting parentheses can clarify expression})\)
Disjunction ("or")

- Disjunction of \(P, Q \) written \(P \lor Q \)
 ("P or Q")
- \(P \lor Q \) is true if at least one of \(P, Q \)
 is true:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

E.g.: \((\forall x \in \mathbb{R})(x^2 \geq 0) \lor (96 \text{ is prime})\)
 is \(T \), but \((\forall x \in \mathbb{R})(x^2 \geq 0) \lor (96 \text{ is prime})\)
 is \(F \).

Negation ("not")

- Only unary connective we’ll use
- Negation of \(P \) written \(\neg P \)
- \(\neg P \) true iff \(P \) is false:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(\neg P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>
Ex 5:

1. \((\forall x \in \mathbb{N}) (\exists y \in \mathbb{N})(y^2 = x)\)

is \((F)\), hence:

2. \((\forall x \in \mathbb{N}) (\exists y \in \mathbb{N})(y^2 = x)\)

is \((T)\), hence:

3. \(\exists x (\forall y \in \mathbb{N})(y^2 = x)\)

is \((F)\) again.

4. For any statement \(P\), the statement \(P \lor \neg P\) is \((T)\), whereas \(P \land \neg P\) is \((F)\).

E.g. \((96 \text{ u prime}) \lor (96 \text{ u prime})\) is \((T)\), but \((96 \text{ u prime}) \land (96 \text{ u prime})\) is \((F)\).

We can use connectives in var. prop/Prop.

E.g. \(\exists x \forall y \exists z (x^2 + y^2 = z^2)\)

then \(P(3,5)\) is true
while \(P(3,6)\) is false.

and \((\exists x, y \in \mathbb{N}) P(x, y)\) is true
while \((\forall x, y \in \mathbb{N}) P(x, y)\) is false.

We can also use in def/defns, set-builder notation etc.
- e.g. If A, B are subsets of a universal set U, then:

$$A \cap B = \{x \in U \mid x \in A \land x \in B\}$$

$$A \cup B = \{x \in U \mid x \in A \lor x \in B\}$$

$$\overline{A} = \{x \in U \mid \neg (x \in A)\}$$

- We'll explore connections between set operations and connectivity more later.

Implication:

- Given statements P, Q, the statement $P \implies Q$ is read "P implies Q" or "If P, then Q."
- $P \implies Q$ is true if whenever P is true, Q is also true.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- Notice: $P \implies Q$ is always true when P is false, which is often confusing when first learning the connective.
- $P \implies Q$ is only (F) when P is (T) but Q is (F).

\[\]
Statements of form \(P \Rightarrow Q \) are called conditional statements.

Ex. 5:

1. "\(1 + 1 = 2 \Rightarrow (1 + 1) + 1 = 3 \)" is true.
2. "\(1 + 1 = 2 \Rightarrow (1 + 1) + 1 = 4 \)" is false.
3. "\(1 + 1 = 2 \Rightarrow \sqrt{2} \notin \mathbb{N} \)" is true even though the \(P \) and \(Q \) in this example are not apparently related statements.
4. "My name is Sally \(\Rightarrow \) my name begins with S." is true.

- Both the premise \(P \) and conclusion \(Q \) in this case are (F), but the conditional \(P \Rightarrow Q \) is true.

Illustration: "Any false implies false" is true.

5. "Tomorrow is Sunday \(\Rightarrow \) my name is Garrett" is also true.
 ("false \(\Rightarrow \) true" is true)

6. \((\exists x \in \mathbb{R})(x^2 = -1) \Rightarrow 1 + 1 = 3 \) is true! Automatically since premise \((\exists x \in \mathbb{R})(x^2 = -1) \) is false, despite fact it has no apparent relation to conclusion.
7. can also use \(\Rightarrow \) in var prop's

E.g.,

\[x \geq 2 \Rightarrow x^2 \geq 4 \]

is a well-formed var. prop'n and

\[(\forall x \in \mathbb{R}) (x \geq 2 \Rightarrow x^2 \geq 4) \]

is \underline{true}, because:

For every \(x \in \mathbb{R} \), either \(x \geq 2 \), in which case \(x^2 \geq 4 \) (i.e., \(x \geq 2 \Rightarrow x^2 \geq 4 \)) holds because "true \Rightarrow true" is \underline{true}; or \(x < 2 \) in which case \(x \geq 2 \Rightarrow x^2 \geq 4 \) holds automatically (because "false \Rightarrow ..." is \underline{true}).

8. \(\mathbf{OTOL}: (\forall x \in \mathbb{R}) (x^2 \geq 4 \Rightarrow x \geq 2) \)

is false because there is a real number \(x \) (e.g., \(x = -3 \)) such that

\[x^2 \geq 4 \ \underline{\text{true, but}}\]
\[x \geq 2 \ \underline{\text{false}}. \]
Equivalence

Given statements \(P, Q \), the statement \(P \iff Q \) (read: "\(P \) if and only if \(Q \)"

or: "\(P \iff Q \)"

is true if and only if \(P, Q \) have the same truth value.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \iff Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

\[\text{ex'}: \ G \quad (1+1 = 2) \iff (1+1+1 = 3) \quad \text{u} (T) \]

\[\text{ex'}: \quad (1+1 = 3) \iff (1+1+1 = 4) \quad \text{u} (T) \]

\[\begin{align*}
\text{ex'}: \quad (\forall x \in \mathbb{N})(n>0) \iff (1+1 = 2) \quad \text{u} (T) \\
\text{ex'}: \quad (1+1 = 2) \iff (2+2 = 5) \quad \text{u} (F) \\
\end{align*} \]

\[\text{ex'}: \quad (\forall x \in \mathbb{R})(x>0) \iff (\exists y \in \mathbb{R})(y^2=x^2) \quad \text{u} (T) \]

\[\text{why}: \quad \text{For any fixed} \ x_0 \ \text{in} \ \mathbb{R}, \
\text{the statements} \ "x_0>0" \ \text{and} \ "(\exists y \in \mathbb{R})(y^2=x_0)" \
\text{are either both true, or both false.} \]
Definition: Two statements P, Q are said to be **logically equivalent** if $P \iff Q$ is true.

- E.g., $1+1=2$ and $1+1+1=3$ are logically equiv.
- We're more interested in **logically equiv. forms** for connected (e.g., negated) and **quantified statements**.

Negating Quantified Statements:

- $P(x)$ is a var. prop., and S is a set.
- Consider the negated statements:

\[
\begin{align*}
\neg 1 & \,(\forall x \in S) P(x) \\
\neg 2 & \,(\exists x \in S) P(x)
\end{align*}
\]

Observe:

\[
\begin{align*}
& \neg 1 \text{ is true iff there is an } x \in S \\
& \text{ s.t. } P(x) \text{ is false, i.e. iff } \\
& (\exists x \in S) \neg P(x) \text{ is true}.
\end{align*}
\]

\[
\begin{align*}
& \neg 2 \text{ is true iff for every } x \in S \text{ we have } P(x) \text{ is false, i.e. iff } \\
& (\forall x \in S) \neg P(x) \text{ is true}.
\end{align*}
\]
Thus shows:

\[\neg (\forall x \in S) P(x) \iff (\exists x \in S) \neg P(x) \]

is always true (regardless of the prop'ns \(P(x) \))
i.e. that \(\neg (\forall x \in S) P(x) \) and \((\exists x \in S) \neg P(x) \) are logically equiv.

Likewise:

\[\neg (\exists x \in S) P(x) \iff (\forall x \in S) \neg P(x) \]

is always true.

\[\rightarrow \] these equivalences are often useful when trying to prove quantified statements by contradiction.

Ex's:

\[\neg (\forall x \in \mathbb{R}) (x \in \mathbb{N}) \]

is equiv. to:

\[(\exists x \in \mathbb{R}) \neg (x \in \mathbb{N}) \]

"not all reals are naturals"

"there is a real which is not a natural"

(Note: we'll often write \(\neg (x \in \mathbb{N}) \) as \(x \notin \mathbb{N} \), \(\neg (x=y) \) as \(x \neq y \), etc...)

\(\neg (\exists x \in \mathbb{R}) (x+1 = 0) \)

is equiv. to:

\((\forall x \in \mathbb{R}) (x+1 \neq 0) \)

"there is no additive inverse to 1 in \(\mathbb{R} \)"

"every real is not an additive inverse for 1"

(In this case, both statements are false)
For multiple quantifiers, just iterate the process...

\[\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad (xy = 1) \rightarrow \text{"not every real has a multiplicative inverse"} \]
\[\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad (xy = 1) \]
\[\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad (xy \neq 1) \rightarrow \text{"there is a red w/o a multiplicative inverse"} \]

In this case: all are true since \(x = 0 \) has no inverse.

Negating connected statements

Prop'n: For any statements \(P, Q \) the following logical equivalences hold (i.e., the following statements are always true):

1. \(\neg \neg P \equiv P \)
2. \(\neg (P \land Q) \equiv \neg P \lor \neg Q \)
3. \(\neg (P \lor Q) \equiv \neg P \land \neg Q \)

PF: To prove, we'll use truth tables.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(\neg P \lor \neg P)</th>
<th>(\neg \neg P \lor \neg P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\(\neg \neg P \lor \neg P \) is always true.