Schematically:

\[\text{PreImages:} \]

Defn: Sps \(f: A \to B \) is a function and \(Y \subseteq B \). The **preimage** of \(Y \), denoted \(\text{PreIm}_f(Y) \), is defined as:

\[
\text{PreIm}_f(Y) = \{ x \in A \mid f(x) \in Y \}
\]

= the inputs in \(A \) whose outputs are in \(Y \).

Note: Since \(f(x) \in B \) for every \(x \in A \), we don't separately define \(\text{PreIm}_f(B) \) — this is always just \(A \).

Ex: \(\Box \) \(A = \{1, 2, 3\} \quad f = \{(1, 3), (2, 0), (3, 0)\} \quad B = \{\ast, 0, 0\} \)
Then: \(\text{PreImp}(\emptyset) = \{x \in A \mid f(x) \in \emptyset \} \)
= \{x \in A \mid f(x) = \emptyset \}
= \emptyset.

\(\text{PreImp}(\{0, 13\}) = \{x \in A \mid f(x) \in \{0, 13\} \} \)
= \{x \in A \mid f(x) = 0, 13 \}
= \emptyset.

\(\text{PreImp}(\{0\}) = \{x \in A \mid f(x) \in \{0\} \} \)
= \{x \in A \mid f(x) = 0 \}
= \emptyset.

Consider \(f: \mathbb{R} \to \mathbb{R} \)
\(f(x) = x^2 \)

Then: \(\text{PreImp}(\{0, 13\}) = \{x \in \mathbb{R} \mid f(x) \in \{0, 13\} \} \)
= \{x \in \mathbb{R} \mid x^2 \in \{0, 13\} \}
= \{x \in \mathbb{R} \mid x^2 = 0, 13 \}
= \{x \in \mathbb{R} \mid x = 0, \sqrt{13}, -\sqrt{13} \}.

Also: \(\text{PreImp}(\{0, 27\}) = \{x \in \mathbb{R} \mid x^2 \in \{0, 27\} \} \)
= \{x \in \mathbb{R} \mid 0 \leq x^2 \leq 27 \}
= \{x \in \mathbb{R} \mid x^2 \leq 27 \}
= \{x \in \mathbb{R} \mid 0 \leq x \leq \sqrt{27} \} \)
\[(\text{iii}) \]
\[= [-\sqrt{2}, \sqrt{2}] \]

Also: \(\text{PreIm} \left([0, \infty) \right) = \{ x \in \mathbb{R} | x^2 \in [0, \infty) \} = \mathbb{R} \).

Q: What happens if we take the preimage of the image of some \(x \in A \)?
or the image of the preimage of some \(y \in B \)?

Propn. Suppose \(f : A \to B \) is a function.

(i) Fix \(x \in A \)
 Then: \(\text{PreIm} \left(\text{Im} (x) \right) \supseteq x \)

(ii) Fix \(y \in B \)
 Then: \(\text{Im} \left(\text{PreIm} (y) \right) \subseteq y \)

Pf: (i) Fix \(x \in X \).
 By def'n: \(\text{PreIm} \left(\text{Im} (x) \right) = \{ y \in A | f(y) \in \text{Im} (x) \} \)
 but since \(x \in X \), we knew \(f(x) \in \text{Im} (x) \) by def'n of \(\text{Im} (x) \)
 Hence \(x \in \text{PreIm} \left(\text{Im} (x) \right) \)
 Since \(x \) was arbitrary, (i) is proved. \(\checkmark \)
(xiv) Fix \(y \in \text{Im}(\text{preIm}(Y)) \)
by def'n of image, \(\exists x \in \text{preIm}(Y) \)
s.t. \(f(x) = y \).
But then, by def'n of preimage, \(f(x) \in Y \), i.e. \(y \in Y \).
Since \(y \) was arbitrary, (iii) is proved.

Picture:

(i) \(\text{preIm}(f(x)) \)

(ii) \(\text{Im}(Y) \)

Note: in general neither containment can be reversed.

Ex: Let \(f: \mathbb{R} \to \mathbb{R} \)
\(\exists \ f(x) = x^2 \)
Let \(x = 2 \sqrt{3} \)
Then: \(\text{Imp}(x) = \text{Imp}(\{1\}) \)
\[= \{ f(1) \} \]
\[= \{ 1 \} = \{ 1 \}. \]

So: \(\text{PreImp}(\text{Imp}(x)) = \text{PreImp}(\{1\}) \)
\[= \{ x \in \mathbb{R} \mid f(x) \in \{1\} \} \]
\[= \{ x \in \mathbb{R} \mid x^2 \in \{1\} \} \]
\[= \{ -1, 1 \}. \]

hence: \(x = \{1\} \Rightarrow \{ -1, 1 \} = \text{PreImp}(x) \)
in this case. \(\checkmark \)

New let \(y = \{ 2, -1 \} \)

Then: \(\text{PreImp}(y) = \{ x \in \mathbb{R} \mid f(x) \in \{2, -1\} \} \)
\[= \{ x \in \mathbb{R} \mid x^2 \in \{2, -1\} \} \]
\[= \{ -1, 1 \}. \]

So: \(\text{Imp}(\text{PreImp}(y)) = \text{Imp}(\{ -1, 1 \}) \)
\[= \{ f(-1), f(1) \} \]
\[= \{ (-1)^2, 1^2 \} \]
\[= \{ 1 \}. \]

So \(\text{Imp}(\text{PreImp}(y)) = \{1\} \Rightarrow \{ 2, -1 \} = y \)
in this case. \(\checkmark \)
Let \(A = \{1, 2, 3\} \)
\(B = \{\ast, 0\} \)
\(C = \{1, 2\} \)
\(D = \{\ast, 0, D\} \)

Define
\[
\begin{align*}
g & : A \to B \\
h & : C \to D \\
j & : A \to D
\end{align*}
\]

by:
\[
\begin{align*}
g & = \{(1, \ast), (2, 0), (3, \ast)\} \\
h & = \{(1, \ast), (2, 0), (3, D)\} \\
j & = \{(1, \ast), (2, 0), (3, D)\}
\end{align*}
\]

Surjectivity: Def \(f : A \to B \)

is surjective (or onto) iff \(\text{Im} f = B \).

i.e. iff
\[
(\forall b \in B) \ (\exists a \in A) \ (f(a) = b)
\]
(xvii) \(\exists i, j \) above are surjective

- \(n \) is not; because \(D \notin \text{Im}_n \)

Proving surjectivity

Example 1 Define \(f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) by \(f(mn) = mn \).

Claim \(f \) is surjective

Proof: \(\text{WTS: } (\forall x \in \mathbb{Z}) (\exists (mn) \in \mathbb{Z} \times \mathbb{Z}) (f(mn) = x) \)

- So fix \(x \in \mathbb{Z} \)
- Observe \(f(0, x) = 0 + x = x \)
- Hence \(\exists (mn) \in \mathbb{Z} \times \mathbb{Z} \) s.t. \(f(mn) = x \), namely \((m, n) = (0, x) \).
- Since \(x \) was arbitrary, claim is proved.

Example 2 Define \(f: \mathbb{R} \to \mathbb{R} \) by \(f(x) = 2x + 1 \).

Claim: \(f \) is surjective

Proof: Fix \(y \in \mathbb{R} \).

- Let \(x = \frac{y - 1}{2} \)
- Then: \(f(x) = f\left(\frac{y - 1}{2}\right) = 2\left(\frac{y - 1}{2}\right) + 1 = y \)
- Since \(y \) was arbitrary, claim is proved.
(xviii) ③ Define \(f: \mathbb{R} \rightarrow \mathbb{R} \) by \(f(x) = x^2 \).

Claim: \(f \) is not surjective.

Proof:

\[
\text{wts: } \forall y \in \mathbb{R} \exists x \in \mathbb{R} (f(x) = y)
\]

\[
i.e. \ (\forall y \in \mathbb{R}) (\exists x \in \mathbb{R}) (f(x) = y)
\]

\[\iff y = -1.\]

\(f(x) = x^2 \geq 0 \)

\[\text{hence } f(x) \neq -1 = y.\]

Since \(x \) was arbitrary:

\[
(\forall x \in \mathbb{R}) f(x) \neq -1. \checkmark
\]

\((i.e. \ -1 \notin \text{Im} f)\).

Injective

A function \(f: A \rightarrow B \) is called injective (or one-to-one or \((-1\)) if \((\forall x, y \in A) (f(x) = f(y) \Rightarrow x = y) \)

or equivalently: \((\forall x, y \in A) (x \neq y \Rightarrow f(x) \neq f(y)) \).

"Distinct inputs map to distinct outputs."

Ex.

- \(g \) above is \(\underline{\text{not injective}} \) since \(1 \neq 3 \)
 - \(g(1) = g(3) = * \)
- \(h, j \) are injective.
(2) Proving Injectivity:

Two approaches: fix \(x, y \in A \) and either:

1. Assume \(f(x) = f(y) \) and prove \(x = y \)
2. Assume \(x \neq y \) and prove \(f(x) \neq f(y) \).

Ex's 2 Consider again \(f: \mathbb{R} \rightarrow \mathbb{R} \) defined by \(f(x) = 2x + 1 \).

Claim: \(f \) is injective.

Proof:
- Fix \(x, y \in \mathbb{R} \)
- Assume \(f(x) = f(y) \)
- I.e. \(2x + 1 = 2y + 1 \)
- Then \(2x = 2y \) hence \(x = y \)
- Since \(x, y \) were arbitrary, claim is proved.

2. Define \(F: \mathbb{N} \rightarrow \mathbb{N} \) by \(F(n) = n^2 \).

Claim: \(F \) is injective.

Proof: Fix \(n, m \in \mathbb{N} \) and suppose \(n \neq m \).

WTS: \(F(n) \neq F(m) \).

Two cases:
1. \(n < m \)
2. \(m < n \)
(2c) if \circ since $n \cdot m$ both positive can square both sides of inequality to get $n^2 < m^2$ i.e. $f(n) < f(m)$ so in particular $f(n) \neq f(m)$.

if \bigcirc similar

since $n \cdot m$ were arbitrary, claim is proved.

3 Define $F : \mathbb{Z} \to \mathbb{Z}$ by $F(n) = n^2$

claim: F is not injective

pf: $F(-2) = F(2) = 4$

but $-2 \neq 2$.

Bijections Def'n: a function $f : A \to B$ is bijective if f is both injective and surjective

Ex: g above is not bijective (surjective, but not injective)

- nor is h (injective, but not surjective)

- f is bijective
(xxi) Proving bijectivity:

Ex's

1. Consider again $F : \mathbb{R} \to \mathbb{R}$ defined by $F(x) = 2x + 1$.

 Claim: F is bijective.

 Pf: We've already showed F is both surjective and injective.

2. A spicier one: define $F : \mathbb{Z} \to \mathbb{N}$ by

 $$f(n) = \begin{cases} 2n & \text{if } n > 0 \\ 2(\lceil n \rceil) + 1 & \text{if } n \leq 0 \end{cases}$$

Picturing:

```
-3 -2 -1  0  1  2  3  4
   \_\_\_\_\_\_\_\_\_\_\_\_\_
   \_\_\_\_\_\_\_\_\_\_\_\_\_
   \_\_\_\_\_\_\_\_\_\_\_\_\_
```

Claim: f is bijective.

Pf: (Surjectivity):

- Fix $n \in \mathbb{N}$
- If n is even, then $n = 2k$ for some $k \in \mathbb{N}$ (so $k > 0$)
- Hence $f(k) = 2k = n$
If n is odd, then $n = 2k + 1$ for some $k \in \mathbb{N}$; hence $k > 0$, hence $-k < 0$.

Hence $f(-k) = 2k + 1 = n$.

In either case, $(\exists x \in \mathbb{Z})(f(x) = n)$

Hence f is surjective.

Injectivity

For $n, m \in \mathbb{Z}$ and assume $n \neq m$.

We wish $f(n) \neq f(m)$.

We may assume $n < m$, since case when $m < n$ is similar.

Case 1: $0 < n < m$.

Then $f(n) = 2n < 2m = f(m)$.

Hence $f(n) \neq f(m)$.

Case 2: $n < m \leq 0$.

Then $f(n) = 2(-n) + 1$

Then $f(m) = 2(-m) + 1$

Observe: Since $n < m$

\Rightarrow $-n > -m$
\Rightarrow $2(-n) + 1 > 2(-m) + 1$
\Rightarrow $f(n) > f(m)$

So that $f(n) \neq f(m)$.

Case 3: $n \leq 0 < m$.

Then $f(n) = 2(-n) + 1$ is odd

Then $f(m) = 2m$ is even
(22iii)

Hence \(f(n) \neq f(m) \) in this case as well.

\(\Rightarrow \) Hence in all cases \(f(n) \neq f(m) \)

\(\Rightarrow \) Since \(n, m \) were arbitrary, we've proved
\(f \) is injective.

Hence \(f \) is bijective. \(\checkmark \)