Function

- Functions, like relations, are ubiquitous in math.
- But what "are" functions?
- Intuitively: a rule that assigns to each \(x \) in a domain \(A \) a unique output \(f(x) \) in a codomain \(B \).

\[\Rightarrow \text{Can define functions rigorously as a special type of relation} \]

Definition: A function (with domain \(A \) and codomain \(B \)) is a relation \(f \subseteq A \times B \) such that for every \(a \in A \) there is a unique \(b \in B \) such that \((a, b) \in f\).

\[(\forall a \in A) \exists! b \in B [(a, b) \in f \land (\forall c \in B) ((a, c) \in f \Rightarrow b = c)] \]

\[\Rightarrow \text{we write } f : A \rightarrow B \]

To indicate that a subset \(f \subseteq A \times B \) is a function.

\[\Rightarrow \text{we also write } f(a) = b \]

To mean \((a, b) \in f\).
Note: - the definition says every \(a \in A \) is assigned on output \(f(a) \in B \)
- does not insist that for every \(b \in B \) there is \(a \in A \) s.t. \(f(a) = b \)
(fraction \(u \) has property one called onto)

Example:

Let \(A = \{1, 2, 3\} \) \(B = \{\ast, 0, 43\} \)

Then \(f = \{(1, \ast), (2, 0), (3, \ast)\} \) is a function from \(A \) to \(B \)

```
A   B
\( 1 \rightarrow \ast \)
\( 2 \rightarrow 0 \)
\( 3 \rightarrow \ast \)
```

but \(g = \{(1, \ast), (1, 0), (2, \ast), (3, \ast)\} \) is not a function since \(1 \) does not have a unique output

```
A   B
\( 1 \rightarrow \) not a function
\( 2 \rightarrow \ast \)
\( 3 \rightarrow \ast \)
```

Nor \(u = \{(2, \ast), (3, 0)\} \) since \(1 \) is not assigned on output
We'll often define functions by some rule, e.g.

\[F: \mathbb{R} \to \mathbb{R} \]
\[F(x) = x^2 \]

or

\[F: \mathbb{R} \to \mathbb{Z} \]
\[F(x) = \lfloor x \rfloor \]

but behind the scenes we still consider these \(F \)'s to be sets of ordered pairs.

E.g. if we define \(F(x) = x^2 \),
then \((2, 4) \in F\)
\((3, 9) \in F\)
\((4, 16) \notin F\)

Warning: not all rules yield well-defined functions.

E.g. suppose we "define" by the rule
\[F(\text{m,n}) = \text{m+n} \]
then this "function" is not one

\[f(Y_2) = 1 + 2 = 3 ≠ 6 = 2 + 4 = f(2/4) \]

but \(Y_2 = 2/4 \).

- so \(f \) assigns multiple outputs to the same input.
- What's going on? really there's an implicit equiv. relation on \(F \).

 \[\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \ldots \]

- our rule defines \(f \) on a representative of an equiv. class

- in general: when given a rule "defining" some \(F \subseteq A \times B \) to verify \(F \) is a function one must show:

 1. \(\forall a \in A \exists b \in B \) s.t. \((a,b) \in F\)
 2. if \(a = a' \) then \(f(a) = f(a') \)

Equality of Functions

Q: what does it mean for functions \(F : A \rightarrow B \) and \(g : A \rightarrow B \) to be equal?

A: \(F = g \) iff they're equal as sets of ordered pairs, i.e. \(F \subseteq g \).

- equality, \(\iff \) \(f = g \) iff \((a,b) \in F \iff (a,b) \in g\).
In practice, easier to see following:

Theorem: If $F: A \to B$ and $G: A \to B$ are functions then $F = G$ iff $(\forall a \in A) (F(a) = G(a))$.

Pf: you try.

The point: functions can be equal despite being defined by different rules.

ex: let $A = \{1, 2, 3\}$

Define $F: A \to N$ and $G: A \to N$

by

\[
F(x) = x^3 + 11x \\
G(x) = 6x^2 + 6
\]

Then

\[
F(1) = 12 = G(1) \\
F(2) = 30 = G(2) \\
F(3) = 60 = G(3)
\]

i.e. $F = \{(1, 12), (2, 30), (3, 60)\} = G$.

(What's the magic trick?)

\[
F - G = x^3 - 6x^2 + 11x - 6 = (x-1)(x-2)(x-3)
\]
Image

Def'n. Suppose \(f : A \rightarrow B \) is a function and \(X \subseteq A \).

The image of \(X \) under \(f \), denoted \(\text{Imp}(X) \), is defined as:

\[
\text{Imp}(X) = \{ b \in B \mid \exists x \in X \text{ such that } f(x) = b \}
\]

more informally we write:

\[
\{ f(a) \mid a \in X \}
\]

when \(X = A \) we just say that \(\text{Imp}(A) \) is the image of \(f \) and sometimes just write \(\text{Imp} \)

Def'n says: \(\text{Imp}(X) \) is the "set of outputs \(f(x) \) in \(X \)"

\(\text{Imp} = \text{Imp}(A) \) is the "set of all outputs."

In particular:

\[
\text{if } x \in X \text{ then } f(x) \in \text{Imp}(X)
\]

Picture:

[Diagram of a function mapping from set A to set B with \(\text{Imp}(A) = \text{Imp} \) and \(\text{Imp}(x) \).]
Ex: ① \(\text{Let } A = \{1, 2, 3\} \)
\(B = \{*, 0, A\} \)
\(f = \{(1, *), (2, 0), (3, *)\} \)

Then: \(-\text{Imp}(E_{1, 3}) = \{F(1), F(3)\}\)
\[= \{*, *\}\]
\[= \{*\}\]

\(-\text{Imp} = \text{Imp}(A) = \{F(1), F(2), F(3)\}\)
\[= \{*, 0, *\}\]
\[= \{*, 0, *\}\]

② \(\text{Let } f: \mathbb{R} \rightarrow \mathbb{R} \text{ be defined by } f(x) = x^2 \)

Then: \(-\text{Imp}([1, 0, 1])\)
\[= \{(-1)^2, 0^2, 1^2\}\]
\[= \{1, 0, 1\}\]

\(-\text{Imp} = \{x \in \mathbb{R} \mid x \geq 0\}\)

Functions add a layer of complexity to basic set theory of \(\mathbb{N}, \mathbb{U}, \ldots\) we studied earlier.

Prop: Suppose \(F: A \rightarrow B \) is a function and \(S, T \subseteq A \).

Then:
\(-\text{Imp}(S \cap T) \leq \text{Imp}(S) \cap \text{Imp}(T)\)
PF:-fix y \in \text{Imf}(\text{sat})
-\text{then } \exists x \in \text{sat} \text{ s.t. } f(x) = y
-\text{hence } x \in S \text{ and } x \in T
-\text{hence } f(x) \in \text{Imf}(S) \text{ and } f(x) \in \text{Imf}(T)
-\text{i.e. } y \in \text{Imf}(S) \text{ and } y \in \text{Imf}(T)
-\text{i.e. } y \in \text{Imf}(S) \cap \text{Imf}(T)

Since y was arbitrary the prop'n u proved.

Note: in general we don't have
\text{Imf}(\text{sat}) = \text{Imf}(S) \cap \text{Imf}(T)

e.g. Consider \(f(x) = x^2 \) on \(\mathbb{R} \).
let \(S = [-1,0] \), \(T = [0,1,2,3] \)
then:
\text{Imf}(S) = \{ f(-1), f(0) \}
= \{ 1, 0 \}
\text{Imf}(T) = \{ f(0), f(1), f(2) \}
= \{ 0, 1, 4 \}
\text{hence } \text{Imf}(S) \cap \text{Imf}(T) = \{ 0, 1 \}

but:
\text{Imf}(\text{sat}) = \text{Imf}(\{ 0 \})
= \{ f(0) \}
= \{ 0 \}

So in this case
\text{Imf}(\text{sat}) \not\subseteq \text{Imf}(S) \cap \text{Imf}(T).

\text{The essence: Anarchists can send multipr
inputs to some output!}
Preimages

Definition: Suppose $f : A \rightarrow B$ is a function and $Y \subseteq B$. The **preimage** of Y under f, denoted $\text{PreImp}(Y)$, is defined as:

$$\text{PreImp}(Y) = \{ x \in A \mid f(x) \in Y \}$$

Note: Since $f(x) \in B$ for every $x \in A$, we don't separately define $\text{PreImp}(B)$, since this is always just A.

The diagram illustrates the relationship between $\text{Imp}(t)$, $\text{Imp}(s)$, and $\text{Imp}(s \circ t)$, showing how elements are mapped between sets.
ex. 1) \[A = \{1, 2, 3\} \]
\[B = \{\ast, 0, \emptyset\} \]
\[F = \{(1, \ast), (2, 0), (3, \ast)\} \]

Then: \[\text{PreImf}(\{\ast\}) = \{x \in A \mid f(x) \in \{\ast\}\} \]
\[= \{x \in A \mid f(x) = \ast\} \]
\[= \{1, 3\} \]

\[\text{PreImf}(\{\ast, 0\}) = \{x \in A \mid f(x) \in \{\ast, 0\}\} \]
\[= \{1, 2, 3\} = A \]

\[\text{PreImf}(\emptyset) = \{x \in A \mid f(x) \in \emptyset\} \]
\[= \emptyset \]

(2) Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = x^2 \)

Then \[\text{PreImf}(\{0, 1\}) \]
\[= \{x \in \mathbb{R} \mid f(x) \in \{0, 1\}\} \]
\[= \{x \in \mathbb{R} \mid x^2 \in \{0, 1\}\} \]
\[= \{-1, 0, 1\} \]

\[\text{PreImf}(\{0, 2\}) \]
\[= \{x \in \mathbb{R} \mid x^2 \in \{0, 2\}\} \]
\[= \{x \in \mathbb{R} \mid 0 \leq x^2 \leq 2\} \]
\[= \{x \in \mathbb{R} \mid -\sqrt{2} \leq x \leq \sqrt{2}\} \]
\[= [-\sqrt{2}, \sqrt{2}] \]
\[\text{PreImp}(\text{co}x_0) = \{ x \in \mathbb{R} \mid x^2 \in \text{co}x_0 \} = \mathbb{R}. \]

\[\text{PreImp}(\mathbb{R}) = \mathbb{R}. \]

Q: What if we take the preimage of the image of \(x \in A \)?
or the image of the preimage of \(y \in B \)?

Proof:
Suppose \(f: A \rightarrow B \) is a function.

(i) Fix \(x \in A \)
Then \[\text{PreImp}(\text{Imp}(x)) = x \]

(ii) Fix \(y \in B \)
Then \[\text{Imp}(\text{PreImp}(y)) \leq y \]

Proof: (i) Fix \(x \in X \).

By def'n: \[\text{PreImp}(\text{Imp}(x)) = \{ y \in A \mid f(y) \in \text{Imp}(x) \} \]

Now, we know \(f(x) \in \text{Imp}(x) \) by def'n of \(\text{Imp}(x) \)

Hence \(x \in \text{PreImp}(\text{Imp}(x)) \)
Since \(x \) was arbitrary, (i) is proved.
(ii) Fix $y \in \text{Imp}(\text{PreImp}(Y))$
then $\exists z \in \text{PreImp}(Y)$ s.t. $f(z) = y$

but by definition $\text{PreImp}(Y) = \{ x \in A | f(x) \in Y \}$

hence $f(z) \in Y$

hence $y \in Y$

since y was arbitrary

(iii) is proved

Pitches:

(i)

(ii)
In general, neither containment can be reversed.

(i) e.g. \(f : \mathbb{R} \rightarrow \mathbb{R} \)
\[f(x) = x^2 \]
\[\text{Let } x = \{1\} \]

Then: \(\text{Imp}(x) = \text{Imp}(\{1\}) = \{ f(x) \} = \{1\} \)

\[\Rightarrow \text{PreImp}(\text{Imp}(x)) = \text{PreImp}(\{1\}) = \{ x \in \mathbb{R} \mid x^2 = 1 \} = \{-1, 1\} \neq x \]

Hence, \(X \neq \text{PreImp}(\text{Imp}(x)) \), in this case.

(ii) \(\text{Let } y = \{-5, 13\} \)
Then: \(\text{PreImp}(y) \)
\[= \{ x \in \mathbb{R} \mid f(x) \in \{-5, 13\} \} \]
\[= \{ x \in \mathbb{R} \mid x^2 \in \{-5, 13\} \} \]
\[= \{-1, 1\} \]

Hence, \(\text{Imp}(\text{PreImp}(y)) \)
\[= \text{Imp}(\{-1, 1\}) \]
\[= \text{Pre} \{ \text{f}(-1), f(1) \} = \{1\} \neq y \].
Injections

Let $A = \{1, 2, 3\}$
$B = \{\ast, 0\}$
$C = \{1, 2\}$
$D = \{\ast, 0, \Delta\}$

Define:
- $g: A \rightarrow B$
- $h: C \rightarrow D$
- $j: A \rightarrow D$

By:
- $g = \{(1, \ast), (2, 0), (3, \ast)\}$
- $h = \{(1, \ast), (2, 0), (3, \ast)\}$
- $j = \{(1, \ast), (2, 0), (3, \Delta)\}$

Surjective:

Definition: a function $f: A \rightarrow B$ is surjective (or onto) iff $\text{Im}(f) = B$.

Hence, iff

$(\forall b \in B) \ (\exists a \in A) \ (f(a) = b)$
(ii)

- \(x^5 = g \) and \(j \) above are surjective. \(h \) is not because \(y^3 \).

Proving surjectivity

\[\text{ex: } 1 \text{ Define } F: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \]
\[\text{by } F((m,n)) = m+n. \]

Claim: \(F \) is surjective

PF: \(\forall x \in \mathbb{Z} \) \((\exists (m,n) \in \mathbb{Z} \times \mathbb{Z}) F((m,n)) = x \)

- So fix \(x \in \mathbb{Z} \)
- observe \(F((0, x)) = 0 + x = x \)
- Hence \(\exists (m,n) \) s.t. \(F((m,n)) = x \)
 - Namely \((m,n) = (0, x) \),
- Since \(x \) was arbitrary, claim is proved.

2) Define \(F: \mathbb{R} \to \mathbb{R} \) by
\[f(x) = 2x + 1 \]

Claim \(f \) is surjective.

PF: - Fix \(y \in \mathbb{R} \)
 - \(\exists x \) s.t. \(x = \frac{y-1}{2} \)
 - Then \(f(x) = 2\left(\frac{y-1}{2}\right) + 1 = y-1 + 1 = y \)
- Since \(y \) was arbitrary, claim is proved.
Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$.

Claim: f is not surjective.

Proof: WTS: $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}$ such that $f(x) = y$.

Counterexample: $y = -1$.

Then $\forall x \in \mathbb{R}$, $f(x) = x^2 \geq 0$.

Thus $f(x) \neq -1$.

Injective

Definition: A function $f: A \to B$ is called injective (or one-to-one or 1-1) if

$$(\forall x, y \in A)(f(x) = f(y) \Rightarrow x = y)$$

Sometimes helpful to write definition in contrapositive form:

$$(\forall x, y \in A)(x \neq y \Rightarrow f(x) \neq f(y))$$

"Distinct inputs map to distinct outputs."

Example: g above is not injective.

Since $1 \neq 3$ but $g(1) = g(3) = a$.

Thus h, j are injective.
Proving injectivity

Two approaches: Fix \(x, y \in A \) and another:

1. Assume \(f(x) = f(y) \), prove \(x = y \)
2. Assume \(x \neq y \), prove \(f(x) \neq f(y) \)

Ex's

1. Define \(f: \mathbb{R} \to \mathbb{R} \) by \(f(x) = 5x + 6 \)

Claim: \(f \) is injective

PF: Fix \(x, y \in \mathbb{R} \)
- Assume \(f(x) = f(y) \)
 \[5x + 6 = 5y + 6 \]
 \[-\text{Subtract } 6 \quad \text{from both sides} \]
 \[5x = 5y \]
 \[-\text{Divide } 5 \quad \text{on both sides} \]
 \[x = y \]

Since \(x, y \) were arbitrary, claim is proved.

2. Define \(f: \mathbb{N} \to \mathbb{N} \) by \(f(n) = n^2 \)

Claim: \(f \) is injective

PF: Fix \(n, m \in \mathbb{N} \) and assume \(n \neq m \)
- (WTS: \(f(n) \neq f(m) \))
 - Two cases: (i) \(n < m \)
 - (ii) \(m < n \)

If (i): Since \(n, m \) both positive we may square both sides...
\[c^2 < \frac{1}{2} \]

i.e. \(f(n) < f(m) \)

hence \(f(n) \neq f(m) \)

(ii) Similar

\(\Rightarrow \) since \(n \neq m \) we arbitrary claim is proved

\(\mathcal{C} \) Define \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) \(f(n) = n^2 \)

Claim: \(f \) is not injective

PF: \(f(-2) = f(2) = 4 \)

- but \(-2 \neq 2 \)

- hence \(f \) is not injective.

Bijections

Def'n a function \(f : A \rightarrow B \) is \underline{bijective} iff it is both \underline{injective} and \underline{surjective}

ex: \(g \) is not a bijection

- \(g \) is surjective, but \(\text{not injective} \)

- \(h \) is \(\text{injective} \) but \(\text{not surjective} \)

\(j = \) \underline{bijective}

i.e. \(j \) is a bijection
(vi)

Proving bijection

1. Define \(f: \mathbb{R} \rightarrow \mathbb{R} \) by
 \[f(x) = 3x - 1 \]

Claim: \(f \) is a bijection (i.e. surjective and injective)

Proof (Surjectivity): Fix \(y \in \mathbb{R} \)

Let \(x = \frac{y + 1}{3} \)

Then \(f(x) = 3\left(\frac{y + 1}{3}\right) - 1 \)

\[= y + 1 - 1 \]

\[= y \]

Since \(y \) was arbitrary, \(f \) is surjective.

Proof (Injectivity): Fix \(x, y \in \mathbb{R} \) assume

\(f(x) = f(y) \)

i.e. \(3x - 1 = 3y - 1 \)

Then \(3x = 3y \) i.e. \(x = y \)

Since \(x, y \) arbitrary, \(f \) is injective.

Hence \(f \) is bijective as claimed.

2. Define \(F: \mathbb{Z} \rightarrow \mathbb{N} \) by:

\[f(n) = \begin{cases} 2n & \text{if } n > 0 \\ 2(n-1) + 1 & \text{if } n \leq 0 \end{cases} \]
Claim: \(f \) is a bijection

PF: (Surjectivity):
- Fix \(n \in \mathbb{N} \)
 - (If \(n \) is even, then \(n = 2k \) for some \(k \in \mathbb{N} \) (hence \(k > 0 \))
 - Hence \(f(k) = 2k = n \)
 - If \(n \) is odd, then \(n = 2k + 1 \) for some \(k \in \mathbb{N} \) (hence \(k > 0 \))
 - Hence \(f(-k) = 2k + 1 = n \)

Thus, in either case \(\exists k \in \mathbb{N} \) \(f(k) = n \)
- Hence \(f \) is surjective.

Injectivity:
- Fix \(n, m \in \mathbb{Z} \) and assume \(n \neq m \)
- We may assume \(n < m \).
- Since \(f \) is a bijection, the argument is similar.
Case 1: \(0 < n < m \)
- Then \(F(n) = 2n < 2m = F(m) \)
- Hence \(F(n) \neq F(m) \)

Case 2: \(n < m \leq 0 \)
- Then \(F(n) = 2(-n) + 1 \)
 \(F(m) = 2(-m) + 1 \)
- Observe: since \(n < m \)
 \(\Rightarrow -n > -m \)
 \(\Rightarrow 2(-n) > 2(-m) \)
 \(\Rightarrow 2(-n) + 1 > 2(-m) + 1 \)
 (i.e. \(F(n) > F(m) \))
- Hence \(F(n) \neq F(m) \) in this case as well.

Case 3: \(n \leq 0 < m \)
- Then \(F(n) = 2(-n) + 1 \) is odd
 \(F(m) = 2m \) is even
- Hence \(F(n) \neq F(m) \) in this case as well.

\(\Rightarrow \) Hence in all cases \(F(n) \neq F(m) \)
\(\Rightarrow \) Since \(n, m \) arbitrary \(F \) is injective
\(\Rightarrow \) Hence \(F \) is bijective
Compositions

Def'n Sps \(F : A \to B \) and \(g : B \to C \) are functions.

The \textit{composition} \(g \circ f \) of \(f \) and \(g \) directed \(g \circ f \), is defined by, \(\forall x \in A \)

\[g \circ f (x) = g(f(x)) \]

\[\begin{array}{ccc}
 & & g \circ f (x) \\
 \downarrow & & \downarrow \\
 \circ f (x) & \rightarrow & g(f(x)) \\
 x & \rightarrow & f(x) \\
 & & C
\end{array}\]

\[\begin{array}{ccc}
 A & \rightarrow & B \\
 & & \downarrow \circ f \\
 & & f(x) \\
 & & C \\
 x & \rightarrow & B
\end{array}\]

\textbf{Ex.}: Define \(F : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \)

by \(f(m,n) = m+n \)

\(g : \mathbb{Z} \to \mathbb{N} \)

by \(g(n) = n^2 + 1 \)

Then \(g \circ f (1,3) = g(f(1,3)) \)

\[= g(4) \]

\[= 17 \]

In general: \(g \circ f (m,n) \)

\[= g(f(m,n)) \]

\[= g(m+n) \]

\[= (m+n)^2 + 1 \]
The Identity Function

Def'n: Let A be a fixed set. The identity function on A, denoted id_A, is the function defined by:

$$\mathrm{id}_A : A \to A$$

$$\forall x \in A \quad \mathrm{id}_A(x) = x.$$

E.g., if $A = \{\#, 0, \oslash, \Delta\}$, then $\mathrm{id}_A : A \to A$ is:

$$\mathrm{id}_A = \{ (\#, \#), (0, 0), (\oslash, \oslash), (\Delta, \Delta) \}$$

Def'n: Let $f : A \to B$ be a function. Then f is invertible if there exists a function $g : B \to A$ such that:

$$g \circ f = \mathrm{id}_A \quad \text{and} \quad f \circ g = \mathrm{id}_B.$$

g is called the inverse of f, and f is denoted f^{-1}.

Note: not all functions are invertible!
In fact:

Theorem: Let $F: A \to B$ be a function. Then F is invertible if and only if F is a bijection.

(\Rightarrow) Suppose F is invertible. Let g be its inverse. We prove F is a bijection.

(surjectivity): Fix $y \in B$.
- Let $x = g(y)$.
- Then $F(x) = F(g(y)) = F(g(y)) = y$.

Since y is arbitrary, F is surjective.

(injectivity): Fix $x, y \in A$ and suppose $F(x) = F(y)$.
- Then $g(F(x)) = g(F(y))$.
- $x = y$.

Since x and y are arbitrary, F is injective.

Hence F is a bijection.

(\Leftarrow) Suppose F is a bijection from A to B. We prove F is invertible.

Define $g = \{(b, a) \in B \times A \mid (a, b) \in F\}$.

We prove $g = F^{-1}$.

\[g(b) = a \quad (a, b) \in F \Rightarrow (b, a) \in g \]
Claim 1: \(g \) is a function from \(B \) to \(A \).

Proof:

- **WTS:** \(\forall b \in B \exists a \in A \text{ s.t. } (b, a) \in g \).

 - **Existence:** Fix \(b \in B \). Since \(g \) is surjective, \(\exists a \in A \) s.t. \(f(a) = b \).
 - Hence, \((b, a) \in g \).

 - **Uniqueness:** Suppose there is \(a' \in A \) s.t. \((b, a') \in g \).
 - Then \(f(a') = b \) (by def'n of \(g \)) and \((a, b) \in F \).
 - But then \(f(a') = f(a) \)
 - Hence, since \(f \) is surjective, \(a = a' \). \(\checkmark \)

Claim 2: \(g = f^{-1} \)

Proof:

- Fix \(a \in A \).
 - Let \(b = f(a) \), so that \((a, b) \in F \).
 - Then \((b, a) \in g \) (i.e., \(g(b) = a \)).
 - Hence \(g(f(a)) = g(b) = a \).
 - Since \(a \) arbitrary, \(g \circ f = 1_A. \) \(\checkmark \)

- Fix \(b \in B \).
 - Let \(a = g(b) \), i.e. \((b, a) \in g \).
 - Then \((a, b) \in F \) (by def'n of \(g \))
 - Hence \(f(g(b)) = f \circ g(b) = b \).
 - Since \(b \) arbitrary, \(f \circ g = 1_B. \) \(\checkmark \)

Here \(g \) is inverse of \(f. \) \(\checkmark \)
Can use theorem to prove certain functions are bijections.

Ex: Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = 2x - 5$.

Claim f is a bijection.

Proof: We show f is invertible.

- Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \frac{x + 5}{2}$.
- We show $g = f^{-1}$.

New: Fix $x \in \mathbb{R}$.

- $g \circ f(x) = g(f(x)) = g(2x - 5) = \frac{2x - 5 + 5}{2} = x$.

Thus $g \circ f = 1_{\mathbb{R}}$.

Also, $f \circ g(x) = f(g(x)) = f\left(\frac{x + 5}{2}\right) = 2\left(\frac{x + 5}{2}\right) - 5 = x$.

Thus $f \circ g = 1_{\mathbb{R}}$.

Hence f is invertible.

Hence f is a bijection, by previous theorem.