Homework #9

1. Let \(F \) denote the set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \), that is, \(F = \{ f \subseteq \mathbb{N} \times \mathbb{N} \mid f \) is a function\}. Define a relation \(R \) on \(F \) by the rule \((f, g) \in R \) iff for every \(n \in \mathbb{N} \) we have \(f(n) \leq g(n) \). Prove that \(R \) is a partial order on \(F \).

2. Fix \(m, n \in \mathbb{N} \). Define a mapping \(f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \) by \(f([a]_n) = [a]_m \).
 a. Prove that if \(m \mid n \) then \(f \) is a well-defined function. That is, prove that if \([a]_n = [b]_n \) then \(f([a]_n) = f([b]_n) \).
 b. Let \(n = 12 \) and \(m = 3 \). Write \(\text{PreIm}_f([1, 2]) \) in roster notation.
 c. Suppose \(m \nmid n \). Show that \(f \) is ill-defined. That is, show there exist \(a, b \in \mathbb{Z} \) such that \([a]_n = [b]_n \) but \(f([a]_n) \neq f([b]_n) \).

3. Suppose that \(A, B, \) and \(C \) are nonempty sets and \(f : A \to B \) and \(g : B \to C \) are functions.
 a. Prove that if \(f \) and \(g \) are surjections then so is \(g \circ f \).
 b. Prove that if \(f \) and \(g \) are injections then so is \(g \circ f \).
 c. Use your results from parts (a.) and (b.) to prove that if \(f \) and \(g \) are bijections then so is \(g \circ f \).

4. Suppose \(X \) and \(Y \) are nonempty sets and \(f : X \to Y \) is a function. Define a new function \(F : \mathcal{P}(Y) \to \mathcal{P}(X) \) by \(F(B) = \text{PreIm}_f(B) \). Prove that \(F \) is injective if and only if \(f \) is surjective.