10.3 Polar Coordinates

- A point \(P \) in the plane is uniquely specified by its rectangular coordinates \((x, y)\).

- Can also specify \(P \) by its polar coordinates \((r, \theta)\), where
 - \(r \) = distance to origin
 - \(\theta \) = angle made w/ \(x \)-axis

Example:
\[P = (2, \pi/4) \]
\[Q = (2, 5\pi/4) \] are shown below.
We allow $\theta > 2\pi$ and $\theta < 0$, e.g., P also has coords $(2, \frac{\pi}{4})$ and $(2, -\frac{\pi}{4})$

So, polar coords are not unique!
Also allow $r < 0$, e.g., $Q = (-2, \frac{\pi}{4})$
To translate:

from polar to rect: use: \[x = r \cos \theta \]
\[y = r \sin \theta \]

from rect. to polar, use: \[r^2 = x^2 + y^2 \]
\[\tan \theta = \frac{y}{x} \]

ex: if P has polar coords \((2, \frac{\pi}{4})\)
then P has rectangular coords
\[x = 2 \cos \left(\frac{\pi}{4} \right) = 2 \cos \left(\frac{\pi}{4} \right) = \sqrt{2} \]
\[y = 2 \sin \left(\frac{\pi}{4} \right) = 2 \sin \left(\frac{\pi}{4} \right) = \sqrt{2} \]
If P has rectangular co-ords $(3, 4)$ then P has polar co-ords given by

$$r^2 = 3^2 + 4^2 = 25 \Rightarrow r = 5$$

$$\theta = \tan^{-1} \left(\frac{4}{3} \right) = 0.927\ldots$$

Polar curves

- can also specify curves w/ polar equations
- usually we consider eq'n of the form $r = f(\theta)$, i.e. when r is a function of θ.
- graph is all polar points (r, θ) when $r = f(\theta)$.

Ex: graph the polar curve $r = 2$. \\
Soln: consists of all points (r, θ) where $r = 2$.
to graph more complicated curves $r = f(\theta)$, can take various approaches:

- plot points (not usually effective in itself)
- translate to rectangular coords (doesn't always work)
- use calculus to find points $\frac{1}{7}$
 - horiz. or vert. tan lines (see second ex below)
 - on brain.

ex: graph $r = \cos \theta = 2 \cos \theta$

Solt: can plot some points to start.
(vi) \[r = 2 \cos \theta \]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0</th>
<th>(\pi/4)</th>
<th>(\pi/2)</th>
<th>(3\pi/4)</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>2</td>
<td>(\sqrt{2})</td>
<td>0</td>
<td>(-\sqrt{2})</td>
<td>-2</td>
</tr>
</tbody>
</table>

- Only gives a very rough sense of curve.
- In this case we can translate to rectangular co-ords, but requires some creativity.

Use: \[x = r \cos \theta \quad y = r \sin \theta \quad x^2 + y^2 = r^2 \]

To get \[r = 2 \cos \theta \] into only \(x, y \).

\[\Rightarrow \cos \theta = \frac{x}{r} \]

\[\Rightarrow r = 2 \cdot \frac{x}{r} \]

\[\Rightarrow r^2 = 2x \]

\[\Rightarrow x^2 + y^2 = 2x \]

\[\Rightarrow x^2 - 2x + y^2 = 0 \]

\[\Rightarrow (x - 1)^2 + y^2 = 1 \]

Circle of radius 1 centered at \((1,0)\).
(vii) Using Calculus to graph a curve \(r = f(\theta) \), finding \(\frac{dy}{dx} \) at various points more reliably than plotting points randomly and trying to interpolate.

- So we need formula for \(\frac{dy}{dx} \)

- Using \(x = r \cos \theta = f(\theta) \cos(\theta) \)
 \[y = r \sin \theta = f(\theta) \sin(\theta) \]

Can view a polar curve \(r = f(\theta) \) as a parametric curve (using \(\theta \) as parameter instead of \(t \))

- We have \(\frac{dx}{d\theta} = \frac{dr}{d\theta} \cos \theta = r \sin \theta \)
 \[\frac{dy}{d\theta} = \frac{dr}{d\theta} \sin \theta + r \cos \theta \]

- From before we knew
 \[\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta} \]
(viii)

Ex: 10) For the curve \(r = 1 + \sin \theta \), find the points at which the line is horizontal or vertical, for \(0 \leq \theta \leq 2\pi

b) Sketch the curve for \(0 \leq \theta \leq 2\pi \).

Sol'n: 1) We know
\[
\frac{dy}{dx} = \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta}
\]

2) horizontal: when \(\frac{dy}{dx} = 0 \)

\[
1 \cdot \frac{dr}{d\theta} \sin \theta + r \cos \theta = 0
\]

3) \(\frac{dr}{d\theta} \cos \theta - r \sin \theta = 0 \)

4) \(r = 1 + \sin \theta \) so \(\frac{dr}{d\theta} = \cos \theta \)

5) So we want: \(\cos \theta \sin \theta + (1 + \sin \theta) \cos \theta = 0 \)

6) \(\sin \theta = -1 \) or \(\sin \theta = 0 \)

7) \(\cos \theta = 0 \) or \(\sin \theta = -\frac{1}{2} \)

8) \(\cos \theta = 0 \) or \(\sin \theta = -\frac{1}{2} \)

9) \(\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6} \)

At these \(\theta \)'s we have:

\[
\begin{align*}
\theta = \frac{\pi}{2} & : r \left(\frac{\pi}{2} \right) = 1 + \sin \left(\frac{\pi}{2} \right) = 2 \\
\theta = \frac{3\pi}{2} & : r \left(\frac{3\pi}{2} \right) = 1 + \sin \left(\frac{3\pi}{2} \right) = 0 \\
\theta = \frac{7\pi}{6} & : r \left(\frac{7\pi}{6} \right) = 1 + \sin \left(\frac{7\pi}{6} \right) = \frac{1}{2} \\
\theta = \frac{11\pi}{6} & : r \left(\frac{11\pi}{6} \right) = 1 + \sin \left(\frac{11\pi}{6} \right) = \frac{1}{2}
\end{align*}
\]
Solve for: \(\frac{dr}{d\theta} \cos \theta - r \sin \theta = 0 \)

\[\cos^2 \theta - (1 + \sin \theta) \sin \theta = 0 \]
\[\cos^2 \theta - \sin \theta - \sin^2 \theta = 0 \]
\[1 - \sin^2 \theta - \sin^2 \theta - \sin \theta = 0 \]
\[1 - \sin \theta - 2 \sin^2 \theta = 0 \]
\[(1 - 2 \sin \theta)(1 + \sin \theta) = 0 \]

\[\sin \theta = -1 \Rightarrow \frac{5\pi}{2} \]

or \(\sin \theta = \frac{1}{2} \Rightarrow \frac{\pi}{6}, \frac{5\pi}{6} \)

at these pts

\[r(\frac{5\pi}{2}) = 1 + \sin(\frac{5\pi}{2}) = 0 \]
\[r(\frac{\pi}{6}) = 1 + \frac{1}{2} = \frac{3}{2} = r(\frac{5\pi}{6}) \]

let's graph these points:
Observe: $E \left(\frac{\pi}{2}, \frac{7\pi}{6} \right), \left(\frac{\pi}{2}, \frac{11\pi}{6} \right), \left(2, \frac{\pi}{2} \right)$

Horizontal line $\sin \frac{dy}{dx} = 0$ is zero

$E \left(\frac{3\pi}{2}, \frac{5\pi}{6} \right), \left(\frac{3\pi}{2}, \frac{\pi}{6} \right)$

Vertical line $\lim \sin \frac{dy}{dx} = \text{undefined}$

But $E \left(0, \frac{5\pi}{6} \right)$ unclear

Since $\frac{dy}{dx} = \frac{0}{0}$.

We use L'Hopital:

$$\lim_{\theta \to \frac{3\pi}{2}} \frac{dy}{dx} = \lim_{\theta \to \frac{3\pi}{2}} \frac{\cos \theta (1 + 2 \sin \theta)}{(1 + \sin \theta)(1 - 2 \sin \theta)}$$

$$= \lim_{\theta \to \frac{3\pi}{2}} \frac{\cos \theta}{1 + \sin \theta} \lim_{\theta \to \frac{3\pi}{2}} \frac{1 + 2 \sin \theta}{1 - 2 \sin \theta}$$

$$= \frac{11}{6} \cdot \frac{-1}{3} = \frac{11}{18}$$
\[
\lim_{\theta \to \pi/2} \frac{\cos \theta}{1 + \sin \theta} = -\frac{1}{2} \lim_{\theta \to \pi/2} \frac{-\sin \theta}{\cos \theta} = -\frac{1}{2} \cdot (\infty) = -\infty.
\]

So there is a vertical line at this point.
Integration and Length in polar co-ords

Integration in rectangular co-ords:

To find area under $y = f(x)$ between $x = a$ and $x = b$

Approximate:

Segment area

$\approx f(a) \Delta x$

Total area

$\approx \sum f(x) \Delta x$

Then take limit:

area $= \int_a^b f(x) \, dx$

$= \int_a^b y \, dx$
In polar coordinates:

to find area bounded by
polar curve $r = f(\theta)$ between $\theta = \alpha$
and $\theta = \beta$

First:

approximate:

approx this area by
a circular sector

sector area
$$= \frac{1}{2} r^2 \Delta \theta$$

(Why: entire area of circle corresponds to $\theta = 2\pi$, which gives $\text{Area} = \frac{1}{2} r^2 2\pi = \pi r^2$)
So area bounded by $r = f(\theta)$

between $\theta = \alpha, \beta$ is approx:

$$
\sum 2 \frac{1}{2} r_i^2 (\Delta \theta)
= \sum 2 \frac{1}{2} (f(\theta))^2 \Delta \theta
$$

So exact area (taking limit) is:

$$
\int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta
= \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^2 \, d\theta
$$

EX: Find the area enclosed by the cardioid $r = 1 + \sin \theta$

(i) in first quadrant

(ii) overall.
(iv) we knew $r = 1 + \sin\theta$ looks like.

\[\theta = \pi/2 \text{ Per (i) we have this area} \]

\[\theta = 0 \]

(i)

\[
A = \int_{0}^{\pi/2} \frac{1}{2} r^2 \, d\theta
\]

\[
= \frac{1}{2} \int_{0}^{\pi/2} (1 + \sin^2 \theta)^2 \, d\theta
\]

\[
= \frac{1}{2} \int_{0}^{\pi/2} 1 + 2\sin^2 \theta + \sin^2 \theta \, d\theta
\]

\[
= \frac{1}{2} \int_{0}^{\pi/2} 1 + 2\sin^2 \theta + \frac{1}{2} - \frac{1}{2} \cos 2\theta \, d\theta
\]

\[
= \frac{1}{2} \int \left[e - 2\cos \theta + \frac{1}{2} e - \frac{1}{4} \sin 2\theta \right]_{0}^{\pi/2}
\]

\[
= \frac{1}{2} \left[\left(\frac{3}{2} e - 2\cos \theta - \frac{1}{4} \sin 2\theta \right) \right]_{0}^{\pi/2}
\]

\[
= \frac{1}{2} \left[\left(\frac{3}{2} e - 2\cos \frac{\pi}{2} - \frac{1}{4} \sin (2 \cdot \frac{\pi}{2}) \right) - \left(\frac{3}{2} e - 2\cos 0 - \frac{1}{4} \sin 0 \right) \right]
\]

\[
= \frac{1}{2} \left[\left(\frac{3}{2} e - \frac{1}{4} \right) - \left(\frac{3}{2} e \right) \right]
\]

\[
= \frac{1}{2} \left(\frac{3}{2} e - \frac{1}{4} \right)
\]

\[
= \frac{1}{2} \left(\frac{3 \pi/4 + 2}{8} \right)
\]

\[
= \frac{1}{2} \left(\frac{3 \pi/4 + 2}{8} \right)
\]
(ii) Cycle thru entire cordial once over $0 \leq \theta \leq 2\pi$.

So

\[\int_0^{2\pi} \frac{1}{2} (1 + \sin^2 \theta)^2 \, d\theta = \int_0^{2\pi} \frac{1}{2} \left[\frac{3}{2} e - 2 \cos^2 \theta - \frac{1}{4} \sin 2 \theta \right] \, d\theta = \frac{1}{2} \left[\left(\frac{3}{2} \cdot 2\pi \right) - 2 - 0 \right] - \left(0 - 2 - 0 \right) = \frac{1}{2} \left[3\pi \right] = \frac{3\pi}{2} \checkmark

Example: Find area of region inside the circle $r = \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.

Solution: First: Why is $r = \sin \theta$ a circle?

Can translate to rectangular coordinates using $x = r \cos \theta$

$y = r \sin \theta$

$x^2 + y^2 = r^2$
(vi)

\[\Rightarrow \sin \theta = \frac{y}{r} \]

So

\[r = 3 \frac{y}{r} \]

\[\Rightarrow r^2 = 3y \]

\[\Rightarrow x^2 + y^2 = 3y \]

\[\Rightarrow x^2 + y^2 - 3y = 0 \]

\[\Rightarrow x^2 + y^2 - 3y + \left(\frac{3}{2} \right)^2 = \left(\frac{3}{2} \right)^2 \]

\[\Rightarrow x^2 + (y - \frac{3}{2})^2 = \left(\frac{3}{2} \right)^2 \]

So, graph of \(r = 3 \sin \theta \) is:

\[\text{corded peaks } C(0, \frac{3}{2}) \]
Interested in this area

Need to find angles of intersection.

Intersect when:

\[3 \sin \theta = 1 + \sin \theta \]

\[\Rightarrow 2 \sin \theta = 1 \]

\[\Rightarrow \sin \theta = \frac{1}{2} \]

\[\Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6} \]

To find area between:

Subtract area of cardioid from area of circle over \(\frac{\pi}{6} \leq \theta \leq \frac{5\pi}{6} \).
(viii)

\[A = \int_{\pi/6}^{5\pi/6} \frac{1}{2} (3 \sin \theta)^2 \, d\theta - \int_{\pi/6}^{5\pi/6} \frac{1}{2} (1 + \sin \theta)^2 \, d\theta \]

\[= \pi \]