Assignment 15: Assigned Wed 12/03. Due never

1. (a) If \(f \in C^0(\mathbb{R}^d) \) and \(\int_{\mathbb{R}^d} (1 + |x|)|f(x)| \, dx < \infty \), show that \(\hat{f} \) is differentiable and \(\partial_j \hat{f}(\xi) = -2\pi i (x_j f(x)) \hat{f}(\xi). \) [Note: \((x_j f(x)) \hat{f}(\xi) \) means \(\hat{g}(\xi), \) where \(g(x) = x_j f(x) \).]

(b) If \(f \in C^0(\mathbb{R}^d) \) and \(\nabla f \in L^1 \) show that \((\partial_j f)^\wedge (\xi) = +2\pi i \xi_j \hat{f}(\xi). \)

(c) Show that the mapping \(f \mapsto \hat{f} \) is a bijection in the Schwartz space.

2. If \(\mu \) is a finite Borel measure on \(\mathbb{R}^d \) define \(\tilde{\mu}(\xi) = \int e^{-2\pi i (x \cdot \xi)} \, d\mu(x) \). If \(\hat{\mu}(\xi) = 0 \) for all \(\xi \), show that \(\mu = 0 \). [Hint: Show that \(\int f \, d\mu = 0 \) for all \(f \in \mathcal{S} \).]

3. For \(f \in L^1 \), the formula \(\hat{f}(\xi) = \int f(x) e^{-2\pi i (x \cdot \xi)} \, dx \) allows us to prove many identities: E.g. \((\delta_x f)^\wedge (\xi) = \hat{f}(\lambda \xi) \), etc. For \(f \in L^2 \), the formula \(\hat{f}(\xi) = \int f(x) e^{-2\pi i (x \cdot \xi)} \) is no longer valid, as the integral is not defined (in the Lebesgue sense). However, most identities remain valid, and can be proved using an approximation argument. I list a couple here.

(a) For \(f \in L^1 \) we know \((\tau_x f)^\wedge (\xi) = e^{-2\pi i (x \cdot \xi)} \hat{f}(\xi) \). Prove it for \(f \in L^2 \).

(b) Similarly, show that \((\delta_x f)^\wedge (\xi) = \hat{f}(\lambda \xi) \) for all \(\xi \in L^2 \).

(c) Let \(F \) denote the Fourier transform operator (i.e. \(Ff = \hat{f} \)), and \(R \) denote the reflection operator (i.e. \(Rf(x) = f(-x) \)). Note that our Fourier inversion formula (for \(f \in L^1 \), \(\hat{f} \in L^1 \)) is exactly equivalent to saying \(F^2 f = Rf \).

Prove \(F^2 f = Rf \) for all \(f \in L^2 \).

4. (Uncertainty principle) Suppose \(f \in \mathcal{S}(\mathbb{R}) \). Show that

\[
\left(\int_{\mathbb{R}} |x f(x)|^2 \, dx \right) \left(\int_{\mathbb{R}} |\xi \hat{f}(\xi)|^2 \, d\xi \right) \geq \frac{1}{16\pi^2} \| f \|^2_{L^2} \| \hat{f} \|^2_{L^2}.
\]

[This illustrates a nice localization principle about the Fourier transform. The first integral measures the spread of the function \(f \). The second, the spread of the Fourier transform \(\hat{f} \).

Hint: Consider \(\int_{\mathbb{R}} x f(x)f'(x) \, dx \).]

5. (Central limit theorem) Let \(f \in L^1(\mathbb{R}) \) be such that \(f \geq 0 \) and \(\int x^2 f(x) \, dx < \infty \). Define \(g_n = (f \cdots f) \) (n-times), and \(h_n(x) = \delta_{1/\sqrt{n}} \sqrt{n} g_n(\sqrt{n}x) \). Show

\[
h_n(\xi) \xrightarrow{n \to \infty} \exp(-2\pi i \xi - 2\pi^2 \xi^2),
\]

where \(\mu = \int x f(x) \, dx \) and \(\sigma^2 = \int (x - \mu)^2 f(x) \, dx \). [The central limit theorem says that tabulating results of a large number of independent trials of any experiment produces a “bell curve”. The key step in the proof, which you will have to do next semester, is showing that any function convolved with itself often enough looks like a Gaussian.]

6. (Sobolev spaces) For \(f \in L^2(\mathbb{R}^d) \) and \(s \geq 0 \) define

\[
\| f \|^2_{H^s} = \int (1 + |\xi|^s)^2 |\hat{f}(\xi)|^2 \, d\xi, \quad \text{and} \quad H^s = \{ f \in L^2 \mid \| f \|_{H^s} < \infty \}.
\]

Intuitively, we think of \(H^s \) as the space of functions with “\(s \)” “weak-derivatives” in \(L^2 \). (This will be formalized in your functional analysis course.)

(a) If \(f \in C^0_0(\mathbb{R}^d) \) and \(D^s f \in L^2 \) for all \(|\alpha| < n \), then show that \(f \in H^n(\mathbb{R}^d) \).

(b) Let \(s \in (0,1) \) and \(f \in L^2(\mathbb{R}^d) \). Show that \(f \in H^s(\mathbb{R}^d) \) if and only if

\[
\int_0^\infty \left(\frac{\| \tau_x f - f \|_{L^2}}{h} \right)^2 \, dh < \infty.
\]

7. (Sobolev embedding) If \(n \in \mathbb{N} \) and \(f \in H^n(\mathbb{R}^d) \) for \(s > n + \frac{d}{2} \) then show that \(f \in C^n \), and further the inclusion map \(H^s \to C^n \) is continuous.

8. (a) (Elliptic regularity) Let \(Lu = \sum a_{ij} \partial_i \partial_j u + \sum b_i \partial_i u + cu \), where \(a_{ij}, b_i, c \) are constants. Suppose \(\exists \lambda > 0 \) such that \(a_{ij} = a_{ji} \) and \(\sum a_{ij} \xi_i \xi_j \geq \lambda |\xi|^2 \) for all \(\xi \in \mathbb{R}^n \) (this assumption is called ellipticity). If \(f \) is \(S \) and \(u, \partial_i u, \partial_i \partial_j u \) are all \(L^2 \cap C^0 \) such that \(Lu = f \), show that \(u \in C^\infty \). [To emphasize why this is surprising, choose for example \(L = \Delta \). Then \(\Delta u = f \) makes no mention of a mixed derivative \(\partial_i \partial_j u \). Yet, all such mixed derivatives exist and are smooth. Hint: If \(f \in H^s \) show that \(u \in H^{s+2} \).]

(b) Show by example that the previous subpart is false without the ellipticity assumption.

9. (Trace theorems) Let \(p \in \mathbb{R}^m \) be fixed. Given \(f : \mathbb{R}^{m+n} \to \mathbb{R} \) define \(S_p f : \mathbb{R}^n \to \mathbb{R} \) by \(S_p f(p) = \int f(p,y) \).

(a) Let \(s > m/2 \), and \(s' = s - m/2 \). Show that there exists a constant \(c \) such that \(\| S_p f \|_{H^{s'}(\mathbb{R}^n)} \leq c \| f \|_{H^s(\mathbb{R}^{m+n})} \).

(b) Show that the section operator \(S_p \) extends to a continuous linear operator from \(H^s(\mathbb{R}^{m+n}) \) to \(H^{s'}(\mathbb{R}^n) \). [Given an arbitrary \(L^2 \) function on \(\mathbb{R}^{m+n} \) it is of course impossible to restrict it to an \(m \)-dimensional hyper-plane. However, if your function has more than \(n/2 \) “Sobolev derivatives”, then you can make sense of this restriction, and the restriction still has \(s-n/2 \) “Sobolev derivatives”].

10. (Rellich Lemma) Let \(K \subset \mathbb{R}^d \) be compact, \(0 \leq s_1 < s_2 \), and suppose \(\{ f_n \} \) are a sequence of functions supported in \(K \). If the sequence \(\{ f_n \} \) is bounded in \(H^{s_2} \), then show that it has a convergent subsequence in \(H^{s_1} \). [This is the generalization of the Arzella-Ascoli theorem in this context.]