21-720 Measure Theory: Midterm.

October 11^{th} , 2013

- This is a closed book test. No calculators or computational aids are allowed.
- You have 80 mins. The exam has a total of 4 questions and 20 points.
- You may use any result from class or homework **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)
- Good luck.

In this exam, we always assume (X, Σ, μ) is a measure space. We use λ to denote the Lebesgue measure on \mathbb{R}^d .

- 5 1. Let *I* be any (possibly uncountable) index set. For every $\alpha \in I$, let $f_{\alpha} : X \to \mathbb{R}$ be a measurable function. Let $f(x) = \sup_{\alpha \in I} f_{\alpha}(x)$. Must *f* be measurable? Prove it or find a counter example.
 - 2. Let $F: \mathbb{R}^d \to [0,\infty)$ be Lebesgue measurable. Consider the following statements:
 - (i) $\int_{\mathbb{R}^d} F \, d\lambda < \infty.$

1

4

- (ii) Let (f_n) be a sequence of functions such that for all $n \in \mathbb{N}$, $f_n : \mathbb{R}^d \to \mathbb{R}$ is measurable, $|f_n| \leq F$, and the sequence (f_n) converges pointwise. Then $\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \, d\lambda = \int_{\mathbb{R}^d} \lim_{n \to \infty} f_n \, d\lambda$ for every such sequence (f_n) .
- (a) True or false: Statement (i) implies Statement (ii). (No proof required.)
- (b) True or false: Statement (ii) implies Statement (i). Prove or provide a counter example.
- 5 3. For $n \in \mathbb{N}$ let $A_n \in \Sigma$ be such that $\sum_{1}^{\infty} \mu(A_n) < \infty$. Define

 $A = \{x \in X \mid \text{there exists infinitely many } k \in \mathbb{N} \text{ such that } x \in A_k \}.$

Does $A \in \Sigma$? If yes, compute $\mu(A)$ in terms of the $\mu(A_n)$'s. Prove your answer.

5 4. Let $f : \mathbb{R}^d \to [-\infty, \infty]$ be a Lebesgue measurable and integrable function such that $\int_I f \, d\lambda = 0$ for all cells I. Must f = 0 almost everywhere? Prove or find a counter example.