Math 21-720: Measure Theory and Integration: Notes
FEugene Choi  dechoi

1 August 28, 2013

Let X be some set.
Definition 1.1 (o-algebra). ¥ is a o-algebra on X if

1. ¥ CP(X),

2. 0ex,

3. Ae Y= Ac ey

4. AjeXforieN=Jo, 4 €X.
Definition 1.2 (Positive measure). u is a positive measure on (X, ) if

1. p: X — (0,00],

2. u(0) =0,

3. A; € X pairwise disjoint for i € N = p(U;2g 4Ai) = Doy 1(Ai).
Definition 1.3 (Borel g-algebra). If (X,7) is a topological space, then the

Borel o-algebra of X, denote by B(X), is the smallest o-algebra containing all
open sets of X.

Remark 1.4. A o-algebra is closed under countable intersections and relative
complementation.

One goal we would like to achieve is to construct the Lebesgue measure.

Definition 1.5 (Cell in R). A set I C R is a cell if (a,b) C I C [a,b] for some
a,b € R with a < b. a is the left endpoint of I and b is the right endpoint if I.

Definition 1.6 (Cell in RY). A set I CR¥isa cell if [ = I} x Iy x --- X I4
where I; C R is a cell.

Definition 1.7 (Volume of a cell). If I = I} x Iy x - I3 C R? is a cell and
a; < b; are the left and right endpoints of each I;, then the volume of I is

d

(1) = H(bi —a;).

i=1

Definition 1.8 (Outer measure). If X is set and X is a o-algebra on X, p* is
an outer measure if

L p(0) =0,
2. (Sub-additivity) A; € E for i € N = p* (U2, Ai) < Doy ¥ (As).



Definition 1.9 (Lebesgue outer measure). Given A C R? the Lebesque outer
measure of A is

A* = inf {iz(m
=1

Remark 1.10. Note that \* is defined for all subsets A of R%, but is only
countably additive on a subset of B(R?).

Proposition 1.11. \* is an outer measure on (R?, P(R9)).

Proof. Certainly \*()) = 0. Fix ¢ > 0. Let A; C R for i € N. Without loss
of generality, assume each \*(A4;) is finite. For every i, we can find cells I; ; for
j € N such that U]O; I, ; O I; and Z;’;l ((I; ;) < X*+ 5. Certainly, {I; j}: jen
is a cover of | J;=; A; by cells, so that

=1

for i € N, I; is a cell and UL‘DA}~

A* (U Ai> <SS U<y (A*(Ai) + 23) < et Yo N(A)).
i=1 i=1 j=1 i=1 i=1
Taking € — 0 completes the proof. O

Proposition 1.12 (Monotonicity). Outer measures are monotonic.
Proof. Obvious. O
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Proposition 2.1 (Separated additivity). If A, B C R? and dist(4, B) > 0,
then A\*(A) + \*(B) = A*(AU B).

Proof. Without loss of generality, assume that A and B have finite Lebesgue
outer measure. By sub-additivity of outer measures, it suffices to show that
A (A) + X*(B) < A*(AU B). Fix € > 0. We can choose cells I; for i € N such
that AX*(AUB) < >02 U(I;) < A (AUB) +e.

We can subdivide the cells Z := {I; };en into another set of cells J that cover
AU B such that diam(J) < @ for all J € J. Choose K to be all the cells
in 7 which intersect A. Let {J]'} = {J;} — {J,.}. Certianly J; N B = 0, so that
{J/"} covers B. Similarly, {J} } covers A. Hence,

N(AUB)+e> > UL) =D 00J;) =Y )+ Y ) = N (A) + \(B).
i=1 j=1 k=1 1=1
Sending € — 0, the result follows. O

We want to eventually show that the Lebesgue outer measure of a cell equals
the volume of that cell. To show this, we first prove an easy lemma.

Lemma 2.2. For every A C R?,

A*(A) = inf {iam
=1

Proof. Let p*(A) denote the right-hand side of the equality above. Trivially,
p*(A) > A*(A). We need to show p*(A) < \*(A).

Pick € > 0. We can find cells {I;};en that cover A such that Y .° ((I;) <
A*(A) + e. For each i, we can certainly find an open cell J; D I; such that
0(J;) < L(I;) + 57. So {Ji}ien is an open cover of A, and

for i € N, I; is an open cell and U I; D A} .
i=1

() <3 <30 () + 25) =S UL + e < A (A) + 2.
=1 =1 =1

Sending € — 0, we have p*(A4) < A*(A). O
Theorem 2.3. For every cell I C R% \*(I) = ¢(I).

Proof. Trivially, A*(I) < ¢(I), since {I} is a cover of I. We need to show
A*(I) > £(I).

Suppose I is closed. Pick € > 0. By we can find open cells {J; }ien
such that I C ;e Ji and 7 £(J;) < A*(I) + €. I is compact, so there is a
finite subset of {J;} that covers I. Without loss of generality, assume that the
subset is {J1,...,Jn} for some N € N. So we have Z@Z\; T < X(I) +e



Extend the faces of each cell J; to hyperplanes and use these to subdivide I
into a finite number of open cells {J;}. Then for each 1 < i < N, Jj is the
union of the closures of some cells in {J;} and some closed cells outside of I.
From this it is easy to see that vazl 0(J;) = > 0(J;) = £(I) where the last
equality simply follows from the definition of volume and the distributive laws.
So £(I) < Zfil 0(J;) < A*(I) + €. Sending € — 0, the result follows.

Suppose [ is not closed. We can choose a closed cell J C I such that £(J) >
£(I) — e. From above, we have \*(J) = £(J) > £(I) — e. So by monotonicity of
outer measures, A*(I) > \*(J) > £(I) —e. Sending € — 0, the result follows. O

Next time, we attempt to construct measures from outer measures using the
Caratheodory construction.
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Let X be some set.

Today, we will construct measures from outer measures using the Caratheodory
construction.

Theorem 3.1 (Caratheodory Construction). Say p* : P(X) — [0,00) is an
outer measure. Define

Y={ECX|VACKX, p"(A)=p* (ANE)+p* (ANE")}.
Then ¥ is a o-algebra, and u := p*|x is a measure.
Proof. We prove this through several steps:
1) Certainly, § € X.
2) Let B € X. Forany A C X,

W(A) = (AN B) 4+ 1" (AN E°) = " (AN (E%)°) + (AN E9),

so that F° € . So X is closed under complementation.
3) Let E,F € X. Consider any A C X. We have
p(A) = u*(AﬂE) +u (AN E°)
P AN(ENF)+u (AN (ENF)) + p* (AN E°).
Note p*(AN(ENF)°) = p*(AN(E ﬂF) NE)+p*(AN(ENF)°NE*°). We have
ENF C E = (ENF)° D E° = (EN ) NE® = E° and (ENF)°NE = ENF°,
so that p*(AN(ENF)°) = p*(AN(ENF)) 4+ p* (AN E). Therefore,
w(A)=p*(AN(ENFE)+p (AN(ENF)°),and ENF € 3. So ¥ is closed

under finite intersections.
As a result, X is closed under finite unions.
4) Let E, F € ¥ be disjoint. Then for any A C X,
W (EUF) = 1" (EUF) N E) + u* (B U F) 1 EY) = u*(E) + i (F).

So p*|y is finitely disjointly additive.

5) Let {E;} C ¥. Define F,, = J;_, E; and E = [J;2, E. Since ¥ is closed
under finite unions, F,, € ¥. Consider any A C X. By sub-additivity,
w*(A) < p*(ANE)+ p* (AN E°). Also, for each n

W (A) = 1 (AN F) + 1 (AN FS) > 1 (AN Fy) + (AN E)

w(ANE;) +p (ANES).

I

«
Il
—



Taking n — oo, it follows that

1w ( zi (ANE;) 4+ p*(ANE®) > p* (AmU ) *(AN E°)
) =p (ANE)+ p (AN E®).

So E € ¥, and X is closed under countable unions.
From this and the previous points, it follows that ¥ is a o-algebra.

6) Let {E;} C X be pairwise disjoint. Define F,, = |J;_, E; and E = [J;2, E.
1*|x is finitely disjointly additive, so u ( w) =t (U B) = Y0 Wi ().
Monotonicity implies that p*(E ) > (U,LZIE) S wr(E;). Taking
n — oo, this implies that p*(E) > Zfil w*(E;). Sub-additivity gives the
other direction of the inequality.

Thus, p*|x is a measure.

O

Using the Caratheodory construction, we can now construct the Lebesgue mea-
sure from the Lebesgue outer measure.

Definition 3.2 (Lebesgue Measure). Let
L={ECR'|VACRY M(A) =X(ANE)+ A\ (ANE)}.

L is the Lebesgue o-algebra and X := \*| is the Lebesgue measure.
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Typically, sets in o-algebra ¥ are called measurable. In R%, sets in £ are called
Lebesgue measurable and sets in B (Rd) are called Borel measurable.

Definition 4.1 (Null Set). We say A C R? is a null set if there exists F € £
such that A C E and A\(E) = 0.

Claim 4.2. If N is a null set, then N € £ and A(N) = 0.

Proof. Consider any A C R¢. By sub-additivity, A*(4) < A*(ANN) + A (4N
N¢). By monotonicity, A*(ANN) < A (N) =0 and \*(AN N < X*(A4), so
that A*(A N N) + A*(ANN°) < A*(A). O

Claim 4.3. Let A C R4, Every B C A is Lebesgue measurable if and only if
AA) =0.

Proof. This was done in Homework 3. O

Eventually, we will also show that every Lebesgue measurable set is the union
of a Borel measurable set and a null set.

Proposition 4.4. B (Rd) C L.

Proof. Because open sets are countable unions of cells, B (Rd) is generated by
open sets, and L is a o-algebra, it suffices to show that I € L for every cell I.
Fix any A C R, By sub-additivity, we have A*(A) < A*(ANT) + A* (AN I°).

For each n, let I, C I be the cell such that dist(I,,1°) = +. By
MNANT) + XN (ANL) = (AN (I°N1,)) < (A). Let B, = I —1,,.
Then A (AN 1) < A(ANT,) + A (AN B,) < A (AN L) + A (By).

Let M be the maximum side length of I. It is easy to see that \*(B,,) < %.
Thus lim, 00 A*(By,) = 0. Since A*(A) > X*(ANI°)+ X *(ANT)—\*(B,), taking
n — 0o, it follows that A*(A4) > A*(ANI¢) + A" (ANI). O

Later, we will show that there exists sets that are not Lebesgue measurable
(given the Axiom of Choice) and sets that are Lebesgue measurable but not
Borel measurable.

Proposition 4.5 (Uniqueness of Lebesgue Measure). If p is any measure on
(R, B (R%)) such that u(I) = A(I) for every cell I, then u(E) = A(E) for every
E € B(R?).

Proof. Consider any E € B (Rd). Then for arbitrary cells {I;} that cover E,
p(E) < 35720 (L) = 32520 M) = 3272, £(1:). So p(E) < A (E) = ME).
Suppose E is bounded. Then we can find a cell I D E. Since u(I) = A(I), we
have p(I — E) < X\ — E) = u(E) > ME).



If E is unbounded, we have A(E) = lim,_, o A(E N B(0,n)) (by Homework 1).
Since each (E N B(0,n)) is bounded, we have

wE) = HILH;O w(ENB(0,n)) = lim AM(ENBO,n)) = A(E).

n— oo
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Say ¥ is a o-algebra of X and C C X. The goal today is to determine what
properties C should have such that if two measures p and v agree on C, then
they agree on ¢(C). For a general C, it is not the case that the two measures
should agree on C.

Example 5.1. If A)B € ¥ and u(A4) = v(A4) and pu(B) = v(B), it need not
be that u(AN B) = v(AN B). For example, take X = {1,2,3}, A = {1,2},
B = {2,3}, and let p({1}) = p({3}) = 0, p({2}) = 1, v({1}) = v({3}) = 0, and
v({2}) = 0. So one might want C to be closed under finite intersections.
Example 5.2. If A € ¥ and u(A) = v(A), it need not be that u(A°) = v(A°)
if u(A), u(X) = co. So one might want p and v to be finite measures.
Definition 5.3 (7-system). We say C C P(X) is a w-system if C is closed under
finite intersections.

Definition 5.4 (A-system). We say A C P(X) is a A-system if
1. X € A;
2. if A; € A with A; C A;44 for i € N, then |J;=, 4; € A;
3. if A,B € A with A C B, then B — A C A.

Definition 5.5. The intersection of A-systems is a A-system. Therefore, we
can define A\(C) := [ycg A to be the smallest A-system containing C, where
S={A|ADCisa Asystem}.

Remark 5.6. If A is a A-system and a w-system, then A is a o-algebra.

Proof. X € A,soforany A€ A, A°=X—A € A. In particular, X — X =0 € A.

If A, B € A are disjoint, then A C B° = B°— A= (AUB)“ € A. Since X € A,
X - (AUB)*=AUB € A. So A is closed under finite disjoint unions. So for
any A,Be A, ANB € A, sothat A— (AN B),B — (BN B) € A. This implies
AUB=(ANB)UA—-(ANB))U(B—-(ANB)) € A. So A is closed under
finite unions.

Consider any A; € A for i € N. Define B,, = [J;_; A; for each n € N. Then
B, C Buyt1, and B, € A by what we just showed above. So UZO:1 B, € A.
Since |J;—; Bn = Uio; A, it follows that [J;2, A; € A, and A is closed under
countable unions. O

The following theorem shows that the added assumptions of C suggested by the
above examples suffices.

Theorem 5.7. If C is a m-system and A D C is a A-system, then A D o(C). In
particular, A(C) = o(C).

Proof. Tt will suffice to show that A\(C) is a m-system (since by [Remark 5.6| this
implies that A(C) is a o-algebra containing C, implying that A D A(C) D o(C)).

Fix A€ C,and let A':={B € A(C)|AN B € \(C)}. Certainly X € A'.



Suppose E,F € A’ with E C F. Then ANE and ANF € A\(C) with ANE C
ANF. So (ANF)—(ANE)=AN(F—-E)eXC)and F—E € A’

Suppose F; € A’ with E; C E;; for each i € N. Then AN E; € A(C) with
ANE; CANE;4 foreach i € N. So ;2 (ANE;) = AN, E; € X(C), so
that |J;2, E; € A

So A’ is a A-system. In particular, by definition of A(C), A" = A(C).

Now, fix A € A(C), and let A” := {B € A(C)| AN B € A(C)}. The exact same
argument as above shows that A” = A(C) is a A-system. In particular, we
showed that A(C) is closed under finite intersections, so that A(C) is a m-system.

By definition of o-algebras, o(C) 2 A(C). By choosing A = A\(C), we have that
A(C) 2 o(C). Thus, A(C) = o(C). O

Corollary 5.8. If © and v are two finite measures that agree on a m-system C,
then p = v on o(C).

Proof. Let A = {E C A(C) | u(E) =v(E)}. Since measures are countably ad-
ditive, disjointly additive, and monotonic, it easily follows that A = A(C). By

it follows that pu and v agree on A(C) = o(C). O

We can use this to come up with a cleaner proof that the Lebesgue measure is
unique.

Corollary 5.9. If 1 is any measure on (R¢, B (R?)) such that p(I) = A(I) for
every cell I, then u(E) = A(E) for every E € B (R?).

Proof. Let C be the set of all cells in R%. Certainly C is a 7-system. For A € L,
define p,(A) :== (AN B(0,n)) and A, (A) == A(A N B(0,n)). Certainly pu,
and ), are finite measures that agree on C. Hence, by tn = An
ono(C) 2B (Rd). Further, note that for A € £, u(A) = limy, 00 pn(A4) and
A(A) = limy, 00 An(A) (this actually follows from Homework 1). So, it follows
that u =X on B (Rd). O

10
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The goal today is to describe measures that can be approximated arbitrarily
well by nice sets.

Definition 6.1 (Regular Measure). Let X be a metric space and B (X) the
Borel g-algebra of X. We say u is a regular Borel measure in X if

1. p is a measure on (X, B (X));

2. for every A € B(X), u(A) =inf {p(U)|U D A is open};

3. for every A € B(X), u(A) =sup {u(K)| K C A is compact};

4. for every compact K € B(X), u(K) < cc.

A measure satisfying condition 2 is called an outer reqular measure. A measure
satisfying condition 3 is called an inner reqular measure. A measure satisfying
condition 4 is called a Radon measure.

If A € B(X) satisfies condition 2, then call A inner regular with respect to u, or
u-inner regular. If A satisfies condition 3, then call A outer regular with respect
to p, or p-outer reqular.

Remark 6.2. Sometimes, in locally compact Hausdorff spaces, only open sets
need to be p-inner regular.

Our goal is to prove that the Lebesgue measure is regular.

Theorem 6.3 (Regularity of Finite Borel Measures). Let X be a compact
space. Let p be any finite Borel measure on X. Then p is regular.

Proof. Since p is finite, it is automatically Radon.

Let A = {A € B(X)|A is inner and outer regular with respect to u}. It suf-
fices to show that A contains all open sets and that A is a A-system (since the

set of all open sets is a 7-system, implying by [Theorem 5.7|that A D B (X)).

Let U C X be open. Trivially, U is p-outer regular. Define

1
K, = {x € U’dist(x,Uc) > }

n

Certainly, K, is closed. Since X is compact, K, is compact. Since U is open,
z € U if and only if d(x,U) > 0. Therefore, U = |J,; K. Since K,, C K41,
lim,, oo u(Kp) — w(U). So U is p-inner regular. Thus, A contains all open
sets.

Since X is the whole space, X is open and compact. So X € A.

Consider A1, Ay € A with Ay C A,. Fix € > 0. For each i, we can find open U;
and compact K; such that K; C A; CU; and u(A4; — K;) < e and pu(U; — A;) < e.
Note that K1 NU® C Ay — Ay C U; — Ko and that K7 NU€ is compact and

11



U, — K — 2 is open. Further,

(U — Ka) — (A1 — A2)) = p((Ur — A1) U (A2 — K3))
= u(Ul — Al) + /J,(AQ — Kz) < 2¢

and

p((Ar — Az) — (K1 NU3Y)) = p

A1 NA3) N (K NU3)°)

A NAS) N (KEUU,))

A1 NASNKY) U (A1 NASNU))
AN K§) U (Uy N AS))

AN KS) + p(Us N AS) < 2e.

((
((
((
((
(

Taking € — 0, it follows that A; — Ay € A.

Consider A; € A with A; C A;11. Fix e > 0. For each 4, we can find open U; and
compact K; such that K; € A; C U; and pu(A; — K;) < 7 and u(U; — A;) < 57.

21

Let A=J;2, A; and U = |J;2, U;. Certainly A C U with U open, and

w(U — A) :u<U(Ui—A)> SZM(Ui—A) gZM(Ui—Ai) <e

Let E,, = U?:l K; and K = Ufil K;. Note each F, is compact, and FE,, C
E,11 € K. Then lim, o u(E,) = u(K) < 00, so that we can find N such that
w(En) > u(K) —e, or p(K — En) < e. Then Ey C A, and

wA—Ey)=mA-K)+uK—-Ey)=pn <U(AZ-—K)> +e
i=1

< Z,u(Ai—K)—l—eS Z,u(Ai—Ki)—&—e < 2e.
i=1 i=1
Taking € — 0, it follows that A € A.
Thus, A is a A-system. O

This proof can easily be extended to a more general space.
Theorem 6.4 (Regularity of Borel Measure). If X = (J_, B,, where B, is

compact, B, C By ,,, and u(B,) < oo, then p is regular.
Proof. This was on Homework 3, so the proof is omitted. O

Corollary 6.5 (Lebesgue Measure is Regular). A is regular.

Proof. Certainly R? = |J°°, B(0,n). Certainly B(0,n) C B(0,n + 1)° =
B(0,n+ 1) and A(B(0,n)) < oo for each n. By [Theorem 6.4} it follows that A

is regular. O

12
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Today, the goal is to construct a non-measurable set, and that all Lebesgue
measurable sets is the union of a Borel measurable set and a null set.

Theorem 7.1 (Existence of Non-measurable Sets). There exists A C R that is
not Lebesgue-measurable.

Proof. Let C be the set of cosets of %, where we are considering (R,+) as a
group and Q as a subgroup of R. Let A C R be some set such that A contains
exactly one representative of each coset in C. Suppose A is measurable.

Suppose A was Lebesgue measurable. Note that {4+ ¢|q € Q} are disjoint,
and that R = J cq(A +q). If A(4) =0, then

AR =X [ JA+9) | <D MA+q) =0,

q€Q q€Q

a contradiction. Thus, A(A4) > 0.

Now, consider any compact K C A. Let C = quQ, |q|<1(K+q). Certainly, C'is
bounded, so that it has finite measure. Since \(K) = A(K + ¢q) for every g € Q,
it must be that A(K) = 0. This contradicts the regularity of A, so A must not
have been Lebesgue measurable. O

Theorem 7.2. There exists A C R such that
1. if E C A is Lebesgue measurable, then A(E) = 0;

2. if E C A° is Lebesgue measurable, then A\(E) = 0.
Proof. TODO O

Lemma 7.3. For every A € L(RY), for every € > 0, there exists open U and
closed C such that C CAC U and A(U — C) < e.

Proof. Consider any A € L(R?). Fix e > 0. Let A,, = AN(B(0,n)—B(0,n—1)),
where B(0,0) = 0. Then A = |J,_, A,. Further, note A\(4,,) < oo for each
n, so that by regularity of A\, we can find compact K,, and open U, such that
MA, — Kp) < 557 and MU, — A,) < 557. Denote C = |J;2; K, and
U =U;_, Uy. Certainly C C A C U. Further, since the A,’s are disjoint, the
K, ’s are disjoint, so that C' must be closed (since the union of disjoint closed
sets is closed). Then

AU — A) = A < N (Ui—A)> < i)\(Ui—A) < i/\(Ui—Ai) < %
n=1 n=1

n=1

Similarly, A(A — C) < £. So, A(U — C) < e. O

£
3¢

13
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Theorem 8.1. For every A € £L(R?), there exists B € B (R?) and a null set N
such that A = BUN.

Proof. Let A € L(RY). By for n € N, we can find open U,, and
closed C), such that C,, C A C U, and A(U,, — Cy,) < % Choose B =J,—, Ch.

Then
> 1
A—-B)< n — n S n - “Yn -
Y )_A(U Uo) A(Un = Cn) < ~

n=1
Taking n — oo, it follows that A\(A— B) = 0. So choosing N = A — B completes
the proof. O

Let (X,X, 1) be a measure space.

Definition 8.2. Define N' = {AC X|3B e X, B2 A, u(B) =0} to be the
set of all y-null sets.

Definition 8.3 (Complete Measure Space). The o-algebra ¥ is complete with
respect to p, or p-complete, if ¥ D N.

Remark 8.4. The o-algebra of a measure constructed via an outer measure
using the Caratheodory construction is complete.

Proof. Let p be a measure on X constructed via an outer measure using the
Caratheodory construction. Let N be any p-null set. For any A € X, we can
find M € ¥ such that u(M) =0 and M O N. Then p*(N) < p*(M) = 0, so
that p*(N) = 0. Therefore,

p(ANN)+p*(ANNG) < p*(N)+ p*(ANNC) <0+ p*(A).

By sub-additivity, u*(A N N) + p*(AN N°) > p*(A). Thus, it follows that
N € ¥. So ¥ is complete. O

Corollary 8.5. £(R?) is complete.

Definition 8.6 (Completion of Measure Space). X, is the completion of 3 with
respect to p if
Y, ={AUN|AcX, NecN}.

Definition 8.7. For every A € ¥,,, define a measure fi(A) = u(B) if A= BUN
where B € ¥ and N € V.

Claim 8.8. A € X, if and only if there are F, G € ¥ such that ¥ C A C G and
w(G—F)=0.

Proof. If A € ¥,,, there are B € ¥ and N € N such that A= BUN. Since N

is p-null, there is M € 3 such that M O N and pu(M) = 0. Choose F' = B and
G=BNM. Then FCACG, and u(G—F) =p((BUM)—B) < u(M)=0.

Conversely, suppose there are F, G € ¥ such that F C A C G and u(G—F) = 0.
Then choose B = F and N = A~ F. Clearly B € ¥ and N € N and
A=BUN. U

14



Proposition 8.9. X, is a g-algebra, i is a measure on ¥, fi|ls = y, and X, is
complete with respect to p.

Proof. Certainly § € ¥,,. If A € ¥,,, then by we can find F,G € ¥
such that ¥ € A C G and pu(F — G) = 0. Clearly, G¢ C A¢ C F°, and
p(F¢—G° = w(F°NG) = u(G - F) = 0. So by the same claim, A° € ¥,,. If
A; €3, for i € N, we can find B; € ¥ and N; € N such that A; = B;UN;. Let
N =U;Z;N; and B =J;2, B;. Let A=J;2, A;. Then A= BUN. Further,
for each N;, we can find M; C N; with M; € ¥ and u(M;) = 0. Let M = Ufil
Then p(M) =0, and M O N, so that N € N. Thus, A € ¥,. Thus, ¥, is a
o-algebra.

Choose any A € 3,. Suppose A = By UN; = By U N, where B;,B; € &
and Ny, Ny € N. We then can find M; 2 N; with M; € ¥ and p(M;) = 0
for each i. Then p(By) < u(Bz U Ms) < u(Bs) + u(Mz) = pu(Bsz). Similarly,
p(Bg) < u(By), so that u(By) = pu(Bsz). Thus, it is well-defined, and f|s = p.

Let N C X such that there is an M € ¥, with M DO N and (M) = 0. Then
we can find B € ¥ and S € N such that M = BU S. Further, u(B) = 0. So
without loss of generality, we may assume B = (), so that N € S. So N € N.
Then we can write N = ()N N, so that N € X,,. O
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9 September 18, 2013

Definition 9.1 (Measurable Functions). Let X be a set and ¥ a o-algebra on
X. Let (Y,7) be a topological space. We say f : X — Y is measurable with
respect to X, or Y-measurable if for every open U C Y, f~1(U) € X.

Remark 9.2. Most of the time, Y = R and 7 is the set of open sets.
Example 9.3. If (X, d) is a metric space and f : X — Y is continuous, then f
is Borel measurable (in other words, f is measurable with respect to B (X)).
Lemma 9.4. If f : X — Y is any function, let C = {B cYy | f~4B) e Z}.
Then C is a o-algebra.

Proof. Certainly () € C. Suppose A € C, so that f~1(A) € ¥. Then f~1(A°) =
(f*I(A))C € Y, so that A¢ € C. Suppose A; € C for i € N, so that f~1(4;) € &
for each i. Then f~' (U2, Ai) = Uie, f1(4;) € &, so that [J;2, A; € . So
C is a o-algebra. O

Proposition 9.5. Say f : X — Y is Y-measurable. For every B € B(Y),
i(B)ex.

Proof. Let C:= {BCY ‘ f71(B) € ©}. By C is a o-algebra. By

definition of measurable functions, C contains all open sets. Thus, C 2O B(Y).
0

Corollary 9.6. Say f : X — R. Then f is X-measurable if any one of the
following holds:

1. for every a € R, {z € X | f(z) < a} € &;

2. for every a € R, {z € X | f(z) > a} € &;

3. for every B € R, {x € X | f(z) < B} € &;

4. for every e R, {x € X | f(z) > B} € %.
Proof. Let C := {BCY|f *(B)€X}. We know C contains all intervals
(—o00,) for @ € R. By C is a o-algebra, and so is closed un-
der complementation. So [3,00) € C for all f € R, so that [3,«) € C for all

B < a. Open sets can be written as a countable union of such intervals, so that
C contains all open sets. So C 2 B(Y).

The proofs for the remaining three parts are similar. O
Corollary 9.7. Say f: X — Y is measurable and g : Y — Z is Borel measur-
able. Then go f : X — Z is measurable.

Proof. Consider any open set U C Z. Then g~ 1(U) € B(Y) since g is Borel

measurable. Since f is measurable, by [Proposition 9.5, f~!(¢7}(U)) € . Thus,

(go )~ U) = f~Hg~Y(U)) € &, so that go f is S-measurable. O

Proposition 9.8. If f : X — R™ and g : X — R” are measurable, then
(f,g9) : X = R™ x R™ is measurable.
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Proof. Say U C R™ and V C R™ are open. Then (f,g)" (U x V) = f~Y(U) N
g (V) € X. Let C = {UCR™™"|(f,9)"*(U) € £}. By Cisa
o-algebra. Further, C contains all open cells, so that C D B(R™™™). O

Corollary 9.9. If f,g: X — R are measurable, then f +¢g,f —g,fg: X = R
is measurable. If g is non-zero, then 5 : X — R is measurable.

Proof. Define h: X - Rx Rand j : RxR — R by h(z) = (f(x),g(x)) and
j(z,y) = = +y. By [Proposition 9.8, h is measurable. j is continuous so that
it is Borel measurable. So by [Corollary 9.7, f 4+ g = j o h is measurable. The
same argument works for the other three functions. O

Proposition 9.10. Suppose { f,, }nen is a countable set of measurable functions
from X to Y. Then

1. inf,en fr is measurable;

2. sup,,en fn is measurable;

3. liminf,,_, f, is measurable;

4. limsup,,_, . fr is measurable;

5. if f, — f pointwise, then f is measurable.
Proof. Let g(z) = inf,cn fn(2z). Note that

{reX|gx)>a}=J{reX|fulz)>a}.
neN

Each {z € X | fu(z) > a} = f,}((—0o0,q]) is certainly measurable, so that the

union on the right is certainly measurable. So by it follows that
g is measurable as well.

Let f, = —f,. Clearly each f; is measurable. Then sup,cy fn = —inf,en f,,.
Since inf, ey f;, is measurable, it follows that sup,,cy f» is measurable.

liminf, o fn = sup,,~qinf,,>n fr. From what we just showed above, it clearly
follows that liminf,,_,~ f, is measurable. Similarly, limsup,,_,.. fn is measur-
able. Thus, it lim, . f, exists, then it is measurable as well. O
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10 September 20, 2013

Today, our goal is to construct a Lebesgue measurable set that is not Borel
measurable.

Definition 10.1 (Devil’s Staircase). Let C C [0, 1] be the Cantor set. Let «
be the Hausdorfl dimension of C' (a = logs2). Let H, denote the Hausdorff
measure of dimension «. Let F : [0,1] — [0, 1] be defined by

B H,(CNJ0,x))
F@) =="g.@)

This function F' is called the Dewvil’s Staircase.

Remark 10.2. The Devil’s Staircase F' is increasing, continuous, and differen-
tiable almost where with derivative 0.

Theorem 10.3. BC L

Proof. Let F be the Devil’s Staircase, and define g(z) = inf f~1({z}). Then
note that f(g(x)) = x, since f is continuous, and observe that ¢([0,1]) = C,
where C' is the Cantor set. Pick B C [0,1] such that B ¢ £. We can pick such

a set due to[Theorem 7.1l Then note that g(B) C C € N, so that g(B) € L.

Now, certainly g is measurable (since g is increasing), so that g~ '(E) € L
for every E C B(R). However, note that g~!(g(B)) = B. Since B ¢ L,
9(B) ¢ B(R). So g(B) € L — B(R). O

Definition 10.4 (Almost Everywhere). Let (X, X, 1) be a measure space. We
say a property P holds almost everywhere with respect to p, or p-a.e., if there
is a p-null set N and P holds on N¢. If p is implicitly known, then we simply
say almost everywhere, or a.e.

Example 10.5. If f is Riemann integrable, then f is continuous almost every-
where.
Proposition 10.6. Say (X,3, ) is a complete measure space, and let (Y, )

be a topological space. Let f,g : X — 7 be functions such that f = g p-a.e.
Then if f is measurable, then g is measurable.

Proof. We can find a p-null set N such that f = g on N¢. Let U be open. Then
g U)=Nng Y U)+ Nng Y (U) = N°n f~Y(U) + Nng~1(U). Since
is complete, the first term in the sum is certainly measurable, and the second
term is p-null, so that ¢g=1(U) € ¥. Hence, it follows that ¢ is measurable. [
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11 September 23, 2013

Definition 11.1 (Simple Function). Let (X, X, 1) be a measure space. A func-
tion s : X — R is simple if s is measurable and has finite range lying in R.

Definition 11.2 (Characteristic Function). Let A C X. Define y4 : X —» R

by
() 1 z€A
x) = .
xa 0 z¢ A

This function is called the characteristic function of A.

Note 11.3. If A is measurable, then x4 is simple. Suppose s is simple. Then
the range of s is {a1,...,a,} for some a; € R and n € N. Let A; = s7'({a;}).
Then s = Y1 | a;xa,-

Proposition 11.4. Say f : X — [0,00] is measurable. Then there exists a
sequence of simple functions {s;, },en such that s, A f pointwise.

Proof. Suppose f was bounded. Without loss of generality, say f: X — [0,1).

Then for n,k € N with 0 < k < 2", define A, = f~! ([45,n%EL)). Define
n_1 gk

Sn = D _h—0 3wXA,,- Since f is measurable, A, € X, so s, is simple. Note
that 0 < f — s, < 2%, and that f > s,41 > s, (since A, = Ap ok U Ay 2k41).
So s, / f pointwise (in particular, uniformly).

Suppose f was unbounded. Let A, = f~([n,n + 1)), and define f,, = fxa, .
Since f is measurable, A,, is measurable, so that f,, is measurable. Furthermore,
fn is bounded, so by repeating the above process, we can find simple functions
{8n,m }men such that s, m < Spmi1 < fo and |fr — spml| < 2%,1 Note that
since f, =0 on A%, each s, ,, = 0 on Af.

Now, define t, = > | s;n. Clearly, ¢, < t,11, and since the A,’s are disjoint,

i=1
tn < >4 fxa, < f. Consider any z € X. Then x € Ay for some N. So for
n> N, f(z) — to(x) = fn(2) — snn(z) < 5. So t, / f pointwise. O

Lemma 11.5 (Tietze’s Extension Lemma). If C' C X is closed and g : C — R
is continuous, then there exists G : X — R such that G is continuous and
Glec =g

Theorem 11.6 (Lusin’s Theorem). Let (X,%, ) be a measure space with
X compact and g finite regular and ¥ D B(X). If f : X — R is measur-
able, then for every € > 0, there exists a continuous F' : X — R such that

u{z € X| f(x) # F}) <

Proof. Suppose f is bounded. Without loss of generality, say f : X — [0,1).

Fix € > 0. For n,k € N, with 0 < k < 2", define A, = f~! ([£, 5L]). By

regularity of j, we can find compact K, C Apn g with p(Anp — Knk) < 557-
Define C, = Upe; Knk- Then u(X — Cp) < 5. Define g, : C — R by

gn(x) = 2:_01 %ch,k. Note that g, is continuous on C (since C,, is locally

compact).
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Now, define C = (2, C,,. Then pu(X —C) < Y07 u(X — Cy) < e. Further-
more, C C C,, for all n, so that |g, — f| < 5= on C. Thus, on C, g, — f

uniformly. Hence, f|c is continuous. By [Lemma 11.5] we can extend each f|o
to a continuous F' : X — R such that F|c — f|c. Therefore, F = f on C, and

u({z € X | f(a) # F(2)}) < p(X - O) <.

Suppose f is not bounded. Then consider g = tan~!(f). Then g is bounded,
so we can find continuous G : X — oo such that p({z € X |g(z) # G(x)}) < e.
Since arctangent is bijective and continuous, it follows that

p({z € X[ f(z) # tan(G(2))} = p({z € X [tan(g(z)) # tan(G(x))}
= pn({z € X[g(x) # G(2)}) <e.

Thus, choosing F(z) = tan(G(z)), the result follows. O
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12 September 25, 2013

Today, our goal is to construct the Lebesgue integral. As usual, let (X, X, 1) be
a measure space. All functions that we work with are measurable.

Definition 12.1 (Lebesgue Integral for Simple Functions). Let s: X — [0, 00)
be simple. Let s(X) = {a1,...,a,} for a; € R and n € N. Let 4; = s71({a;}).

Then define N
/ sdp = Zam(Ai).
X i=1

This is the Lebesgue integral of simple function s. Note that this sum is well
defined since s was assumed to be positive.

Remark 12.2 (Monotonicity). If s, ¢ are simple and 0 < s < ¢, then

/sd,ug/tdu.
b'e X

Definition 12.3 (Lebesgue Integral for Positive Functions). Let f : X — [0, o0]
be measurable. Define the Lebesque integral of f over X with respect to p as

/fdu: sup /sdu.
X 0<s<f JX

s simple

Remark 12.4. If s is simple and s(X) = {a1,...,a,} and 4; = s~ '({a;}),

then
n
> aip(Ai) = sup /tdu-
=1 0<t<s JX
t simple

Proof. Let 0 < t < s be simple. Then fxtdu < fxsdu = Z?Zl a;p(A;) by
Since t was arbitrary, it follows that

n
sup / tdu < Z%M(Ai)~
0<t<s JXx Py

t simple

By choosing t = s, equality holds. O

Definition 12.5 (Lebesgue Integral). Say f : X — [—o0,00] is measurable.
Let fT = max{f,0} and f~ = max{—f,0}. Then the Lebesgue integral of f
over X with respect to p is

/deu=/xf+du—/xf‘du7

provided that [y f*du < ocor [, f~du < occ.

Example 12.6. Let X = N and p be the counting measure and ¥ = P(N).
Given a : N — R,
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L. if 3772, la(n)| < oo, then Y772, a(n) = [y ady;
2. if 3772, a(n) is conditionally convergent, then [ adpu is not defined.
Remark 12.7 (Monotonicity). If 0 < f < g, clearly [, fdu < [ gdp.

Proposition 12.8 (Monotone Convergence Theorem). Let {f,} be a sequence
of measurable functions such that 0 < f,, < f,11. Let f(x) = lim, 00 fn(2).

Then
/fd,u: 1im/fnd,u.
X n—roo X

Proof. Since f,, < f, by monotonicity, [ fndu < [ fdp, so that

n— oo

lim fnduﬁ/ f dp.
X X

Now, let 0 < s < f be simple. Fix ¢ > 0. Let F,, = {z € X | f, > (1 —¢)s}.
Since fn < fn+1; En g En+1-

If f(z) = 0, then s(z) = 0 and f,(z) = 0. So x € E, for all n € N. If
f(z) > 0, then (1 —€)s(z) < f(x), so we can find N € N such that for n > N,
fn(z) > (1 —€)s(z). Thus z € E, for n > N. It follows that | J72, E, = X.

Let s({X}) = {ai1,...,an} and A; = s7*({a;}). Then

m

/X(l —€)sxg, du = Z(l —e)a;u(A; N Ey)

i=1

= lim [ (1-€)sxm, du= Y (1—e)a;iu(A;) = /X(1 —€)sdpu.

n—oo [y —
i
By definition of E,,, f, > (1 — €)s,XE,,, so that

lim fondp > lim [ (1—e€)spxp, du = / (1—¢€)sdpu.
X X X

n—oQ n—oQ

Taking € — 0, then the supremum over simple functions 0 < s < f, it follows
that

lim fndpu > sup / sdu > / fdu.
n—ooo Jx 0<s<f JX X
s simple

This proves the theorem O

Note 12.9. Monotone Converge fails without the assumption that f,, > 0.
As an example, consider f,(z) = —%. Certainly f, — f = 0. For all n,

Jx fndp = —o0o, but [ fdu=0.

22



13 September 27, 2013

Definition 13.1 (Lebesgue 1 Space). Let
LYX) = {f:X—) [—oo,oo]‘fmea&/ f+du<oo,/ frdu< oo}.
X X

L1(X) is called the Lebesgue 1 Space.

Proposition 13.2 (Linearity of Lebesgue Integrals). Let f,g € £1(X) and let
a, f € R. Then

[ @r+podn=a [ rau+s [ gdn

More generally, if f and g are Lebesgue integrable in the extended sense and
Jx afdp+ [ Bgdu is defined, then af + Bg is Lebesgue integrable in the
extended sense and the same formula applies.

Proof. Without loss of generality, we may assume «, 5 > 0. Surely, if f and ¢
are non-negative and simple, this is true (this can easily be checked by chasing
the definition of simple functions and their integrals).

Suppose f,g > 0. Then by [Proposition 11.4] we can find simple functions s,
and t,, such that s,,t, > 0and s, / f and t, /' ¢g. Then (s, +t,) * f+g
pointwise. By Monotone Convergence, it follows that

lim Spdu + lim ﬁnd,u:/ fdu—i—/ gdu
n—oo [y n—oo [y X X

and
Jim (sn—l—tn)dp:/ (F + g) dp.
X

n—oo X

Since the left-hand side limits are equal, it follows that

| Gsadu=[ sans [ gdn

Now consider arbitrary f and g. We can write f = f* — f- and g=g¢g" —g~.
Let P=ftT+gTand N=f"+g . Sof+g=P—N. Let H= f+g. By

definition,
/ Hdu:/ H+d,u—/ H™ du.
X X b'e

Since H=Ht - H~ =P~ N, we have H" + N = H~ + P. Since we showed
linearity holds for non-negative functions, we have

/H*du—F/Ndu:/H*du—F/Pd,u.
X X X X

23



This implies

/Hd,uz/H*du—/H*duz/Pdu—/Nd,u.
X X X X X

Again, by linearity for non-negative functions, [ Pdu = [ fTdu+ [y g du
and [ Ndu= [y f~du+ [y g~ dp. Thus, we have

/X(f+g)dﬂ=/Xf+du+/xg+du—/Xf‘du—/Xg‘du:/de/wr/xgdu.

O

Theorem 13.3 (Beppo-Levi’s Theorem). If f, > 0 is measurable for each

n € N, then
ndp = n AL
;/Xf 0 /an_:lf 0

Proof. Let S, = ZZ:1 fr. Certainly S, > 0 and is measurable and S,
> peyq fx. The result follows from Monotone Convergence. O

Corollary 13.4. Let

1 1

@)= 2 Xezla) 0t e
m,neEN ‘1’ - W|

Then f(z) < oo a.e.

Proof. By Beppo-Levi, it follows that fR fd\ < co. This implies that f is finite

almost everywhere. O

Corollary 13.5. There exists a measurable f : R — [0, 00| that is finite a.e.
such that for every a < b,
b
/ fdr=00

1 1
9@ = D Xfe-g|a} T g
m,neN ’CE - ;‘

Proof. Define

By [Corollary 13.4} g(z) < 0o a.e. Choose f = g. Then certainly f is finite a.e.
as well. However, it is clear that
b
/ fdA =00

for every a < b. O
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14 September 30, 2013

As usual, let (X, X, u) be a measure space. Unless otherwise specified, all func-
tions in consideration will map from X to R (or [—oo,00]). We would like to
have something of the form

lim nwszw
X X

n— oo

where f, — f pointwise. We already have some version of this, namely Mono-
tone Convergence. However, in general, this is not true.

Example 14.1 (Mass escaping to c0). Let X = R and p = A. Let f, =
X[n,n+1]- Certainly, f, — 0 pointwise, but

lim fnd/\zlyéO:/Od/\.
R R

n—roo

Example 14.2 (Mass collecting at a point). Let X = R and g = \. Let
fn= "X[o,1]- Certainly, f,, — 0 pointwise, but

lim fnd)\zl;éO:/Od)\.
R R

n—oo

Fortunately, we can show that the desired result holds under a few conditions.
Lemma 14.3 (Fatou’s Lemma). Let f,, > 0 be measurable for n € N. Then

n— oo

hminf/ fn dMZ/ liminf f, du.
X X n—oo

Proof. Let g, = infy>y fr. Then g, — liminfy_, o fi as n — oo. Further,
it is clear that ¢, < gn4+1 and g, > 0 for each n € N. Thus, by Monotone
Convergence,

/ liminf f, duy = lim / gndp < liminf/ fndu,
X n—oo n—oo X n—oo X
where the last inequality comes from the fact that f,, > gn. O

Theorem 14.4 (Dominated Convergence). Let f,, for n € N and f be measur-
able such that f,, — f pointwise. Suppose there exists a measurable G' € £1(X)
with G > 0 such that |f,| < G for all n. Then

lim fndu = / fdu.
X X

n—oo

Proof. Let g, = G + f,,. Then g,, > 0. Further, we certainly have g, - G + f
pointwise. Therefore, by Fatou’s lemma,

liminf/xgnd,uZ/X(G—Ff)du. (1)

n—oo
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Note since G € L}(X) and G > 0, [, Gdp < oo, so that

liminf/ gndu:hminf/ (G+fn)du:/ Gdy+ lim / frdu
where the last equality follows from linearity of Lebesgue integrals. So, by

it follows that

/Gdquliminf/ fnd,uz/Gd,unL/fdu:Sliminf/ fnduZ/fdu.

Let h, = G — f,,. Similarly, h, > 0 and h,, = G — f pointwise. Therefore, by
Fatou’s lemma,

n—roo

liminf/thduz/X(G—f) dp. (2)

As before, we have

liminf/ hnd,uzliminf/(fon)du:/ Gduflimsup/ fndu
X p's p's b's

n—oo n—oo n—oo

So, by it follows that

/Gd,u—limsup/ fnduz/Gd,u—/fdu,
X n—oo JX X X

limsup/ fndug/ fdu.
n— 00 X X

This implies that liminf,, o [ fn dp = limsup,, . [y fn dp. Thus, it follows
that lim, o [y fn dp exists and is equal to [ f dpu. O

Definition 14.5 (Laplace Transform). Let X = [0,00) and g = A. Define the
Laplace transform of f by

or

Lf(s) = /Oo et f(t)dt.

0
Proposition 14.6. Say f : [0,00) — R is such that t|f(¢)| € £([0,00)). Then
the Laplace transform of f is differentiable, and LLf = L(—tf(t)).
Proof. We have
d . e e—(s—i—h)t _ st
7. Lf(s) = lim ; — [ dt.

s+h)t_ —st

By the Mean Value Theorem, | < —
Therefore, by Dominated Convergence,

e_(s+h}):76_5tf(t) < tf()

<t,s0

ds
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15 October 2, 2013

Today, we will introduce several different notions of convergence of functions. As
usual, we let (X, X, i) be a measure space, and let f,, f : X — R be measurable
forn e N

Definition 15.1 (Convergence Almost Everywhere). We say f, — f p-a.e. if
there exists a py-null set N C X such that f, — f pointwise on N¢.

Definition 15.2 (Convergence in Measure). We say f, — f in p-measure if
for every € > 0,

Jim p({z € X|[fo = fl > €}) = 0.

Definition 15.3 (Convergence in £P). For any p > 1, we say f, — f in LP (we
will define £? for p > 1 a bit later) if

lim. </X|fnf|pdu)p 0.

We will see how these various notions of convergence relate to each other. In
generate, convergence almost everywhere does not imply convergence in mea-
sure.

Example 15.4 (Mass escaping to co). Let X =R, = A, and f,, = X[n,nt1)-
Then f, — f =0 Ma.e. (in fact, pointwise everywhere), but certainly f,, /4 f
in A\-measure, since u ({x € X ||fn — f]| >€}) =1foralln € Nand e < 1.

However, if the space is finite, then mass cannot escape.

Theorem 15.5 (Egorov’s Theorem). Say u(X) < oo and f,, — f p-a.e. Then
for every € > 0, there exists A. € ¥ such that pu(A.) < € and f,, — f uniformly
on A¢.

Proof. Let € > 0. Define for each N,k € N
1
C’N,k:{xeX‘Elnstuchthat |fn—f|2k}_

Fix k € N. Certainly Cn € Cny1,5. Further, note

ﬂ Cnyi C{zr € X | fn # f pointwise} .

NeN

This implies that 1 ((\yeny Cnv,e) = 0. Since u(X) < oo, by Homework 1, this
implies that limy oo #(Cn k) = 0. So for each k, we can find Ny € N such that
1(Cny k) < 37 -

Let A= J,cn Ony k- Then p(A) < € and for each &k € N,

. 1
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Therefore, on A, |f, — f| < f for all n > Nj. This implies that f, — f
uniformly on A°€. O

Corollary 15.6. Suppose u(X) < oo and f,, — f p-a.e. Then f, — f in
p-measure.

Proof. Fix € > 0. By Egorov’s theorem, there is an A € ¥ such that pu(A4) < 4§
and f, — f uniformly on A°. So for large n, {r € X ||fn — f| <€} D A“.
Hence, {x € X ||fn — f| > €} C A, so that

p{z e X[[fo—fl<e}) <p(A) <4

Taking § — 0, the result follows. O

In general, convergence in measure does not imply convergence almost every-
where.

Example 15.7. Let f; = X[0,3)> fo= X[4,1) 3= X[o,1): fa= X[1.3) and so
on. Certainly f,, — f in A-measure. However, f,(x) /4 0 for every z € [0,1).
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16 October 4, 2013

Theorem 16.1. If f,, — f in p-measure, then there exists a subsequence { f,, }
such that f,, — f p-a.e.

Proof. We can find ny such that p ({z € X ||fn, — f| > 1}) < 1 for all n. Given
ni,...,nk, we can find ng41 > ny such that

1 1
u({xeX’}fnk+1—f‘>k+l}> < oRf1

Let Ay :={x € X ||fu, — fI > 1}

Let B = {x € X |z belongs to finitely many Ay’s}. Note that f,, — f point-
wise on B. Further, note that

B¢ = {z € X |z belongs to infinitely many Aj’s}
={r e X |¥meN, In >m such that z € 4,,}

- U A

meNn>m

However, (Uan An) < zan w(Ay,) < 2,,%1 Therefore,

u(B):mh_r)noou L>J A, | =0.

O
Definition 16.2 (Normed Vector Space). X is a normed vector space over R if
1. X is a vector space over R;
2. X is endowed with a norm ||-|| that satisfies:
a. for every z € X, ||z|| € [0, 00);
b. ||z]| = 0 if and only if = = 0;
c. for every a € R and z € X, |Jaz| = a||z|;

d. for every z,y € X, ||z +y| < ||zl + [yl

Definition 16.3 (Banach Space). A normed vector space X is a Banach space
if it is Cauchy complete under the metric d(z,y) = ||z — y||.

Definition 16.4 (L£? space). For p € [1,00), then the L£P space of complete
measure space (X, X, u) is

LP(X, 2, ) = {f : X — [—00,00] | f is measurable and / IfI” dp < oo}.
p's

S

For every f € L7, define || f[|, = ([x [f]” dp)*.
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Definition 16.5 (£ space). For a measurable f, define

[flle = sup{A [ 1 ({z € X |[f(2)| > A}) > 0}
= inf {A [ p({z € X[|f(z)] > A}) = 0}

Define £%(X, u) = {f [|[fll o < o0}

Definition 16.6. If f and g are measurable, then we can define an equivalence
relation ~ such that f ~ ¢ if and only if f = g a.e. Subsequently, we will only
work with complete measure spaces.

Note 16.7. Say f,g € LP. Then f ~ gifand onlyif [, fdu = [, gdu for every
AeXifand only if [\ fhdu = [, ghdu for every bounded and measurable h.
Definition 16.8 (L? space). For p € [1,00], define LP(X, ) = LP(X, u)/ ~,
the set of equivalence classes of £LP under the equivalence relation ~. For a class
[f] € LP(X, ), pick a member function f € [f] and define [|[f]I|, = [ f]l,-
Note 16.9. For our purposes, we will treat members of L? as functions, not
equivalence classes, but we cannot talk about the value of those functions at a
point. But we can talk about the integral of the function over a set, or talk
about how it compares with another function a.e.

We would like to show that L? is a Banach space eventually. We do this through
several results.
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Remark 17.1. Note |f| < | f||,, a.e. Further f, — f in L* if and only if
Ilfn — fIl = 0 if and only if f,, — f uniformly a.e.

Lemma 17.2 (Young’s Inequality). If 2,y € R and %—i—% = 1 with p,q € (1, 00),
then

2P q
N
p q
Proof. We have In(|z||ly|) = % + %. By concavity of logarithms and
Jensen’s inequality,
Inlzl?  Inlzl? P q
nfzf? | Inlal Sln<le+yl> _
p q p q
Since In is an increasing function, it follows that |xy| < % + % O

Theorem 17.3 (Holder’s Inequality). If p, ¢ € [1, 00] such that 1%4— % =1, and
feLPandge L% then fg € L' and [|fgll, < [IfIl, lgll,-
Proof. Without loss of generality, we may assume ||f[|, # 0 and ||g|[, # 0.

B and g = Hgg”q' Note || f[l, = H§Hq =L

Suppose p,q € (1,00). Define f: ”ff“
Then by Young’s inequality,

~ e (g9 e 11919
[ [ (2B gy U
D'e X p q p q

Igll, = /X Foldu = I1£1, I, /X Faldu < 1£1 gl

Hence,

Suppose p = 1 and g = oo (the case where p = co and ¢ = 1 is similar). Then
191 < llgll. a-c., so that | £g| < || [lgll, a.c., so that

1all, = /X ol dp < /X gl dis = gl /X Fldu = gl 151, -

O

Corollary 17.4 (Holder’s Inequality). If p;,q € [1,00] for 1 < i < N with
ZN L= %, and if f; € LPi, then

i=1 p;

N

11+

i=1

N
<TII%l,,-
=1

q
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Lemma 17.5 (Duality Equality). If p € [1,00) and % + % =1, then

1
Ifl, = sup —— / fgdp.
geLa—{0} ||9||q X

Proof. Holder’s inequality implies that for all g € L9,
1
Fadu < £l llgl, = 11, > —— / fodu.
/x L P gl Jx

Taking the supremum over L? — {0}, we have

1
Ifl,= sup 7/fgdu-
geLa—{0} ||9||q X

It suffices to show there exists a g € L? — {0} such that equality holds. Choose
g= H/‘H%fpil sign(f). Then
p

lally = [ ot dn = —e [ 1017l = [ 1= Il _
tox IF1P D Jx 1717 Jx 7115
So g € LY, ||g]|, =1, and

L/ fgdu= |f|p_1 dp = | fll, -
lall, Jx X HfIIg

Corollary 17.6 (Duality Equality). If p € [1,00) and % + % =1, then

1
£, = sw o [ fodn
geLi—{0} ||9||q X

g simple
Proof. This follows from and the density of simple functions in
LP. O

Before, we go on, let us motivate Holder’s inequality through a dimension count-
ing / scaling argument.

Note 17.7. Choosing X = R%, = X, and a > 0, set fo(x) = f(Z) and
ga(ﬂ?) =g (%) Then

/]Rd fago dA = /R / (2) g (%) dX = o | fgdr

We also have

el = ([ |1 (2)\”@); -(/, ad|f<x>PdA)’l’ =t |11,

. d d_d .. .
Similarly, [lgall, = o lgll, So lfall, lgall, = a%*% ], llgll,- This implies
that we should have 1 = % + %.
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Theorem 18.1 (Minkowski’s Inequality). Let p € [1,00]. If f,g € LP, then
f+gelPand|f+gll, <Ifl,+lgl,

Proof. Suppose p € [1,00). By the Duality equality,

1
If+gl,= sup 7/ (f +9)hdu
nera—{o} Pl Jx

1 1
< sup —/ fhdp+  sup —/ghdu
heLa—{0} ||h||q X heLi—{0} ||th X

1£1l, +llgll,

Suppose p = oco. Then

1f +9gll, = sup {A [ ({z € X|[f(2) + g(z)] > A}) > 0}

=sup{A[p({z € X|[f(2)| > A}) > 0}
+sup {A | ({z € X||g(z)| > A}) > 0}

O

Lemma 18.2 (Countable Triangle Inequality). Let f,, € LP for p € [1, 00]. Say
Y [ fnll, < oo. Then

1. there exists f € LP such that f=>""7 | fu;

2.3 fa— fae and Y00 fo — fin LP;

313202 fall, < 2002 Il
Proof. Suppose p € [1,00). Let F(x) =Y 0" |fn(z)]. Let ty = ny:l | fn| and
SN = Yol fa-

Note i, = F? as N — oo, ty <t} ,, and 0 < t}. By Monotone Convergence

Py = 1 P
/XF dp ngnoo/xt]\,du.

Hence

N 0o
171, = (f Pran)” = g tenl, < Jim SRl = D15l < o0

Hence F € LP. Hence Y -, |fn] = F < oo a.e., which implies that Y-, f, is
absolutely convergent a.e. Let f =Y f,. Then 25:1 fn— fae as N —
0o. By the triangle inequality, ’22[:1 fnl < 27]:[:1 |fn]- So, taking N — oo, it
follows that |f| < F' € LP, which implies that f € LP. This proves 1.
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Since |f| < F, || fll, < IFll, < 2202, I full,» which proves 3. Finally, using 3,

Hfon = > £l = D Ml —0
n=1 p n=N-+1 p n=N+1

as N — oo. This proves 2.

Suppose p = co. Then |f,| < |/ fn]|,, a.e. Hence, we can find a null set M such
that for every x € M¢, |f,(2)| < ||fnll for every n € N. Hence, for z € N,
>0 1 fa(x) is absolutely convergent. Hence, we can define f(z) = > 7, fu(x)
for x € M€ (and we can let f =0 on M).

By the triangle inequality, ‘ZnNzl fn’ < 25:1 |frn|. Taking N — oo, it follows

that | f| < 307 [ful < 302 1 falle, on M€ So f € L. Further, since M is
null, this implies that || f| < >0, [|fnll- This proves 1 and 3.

Finally, applying part 3, as N — 0.

N 00
Hf > | =llsumeniifalle € D0 Ifalle =0
n=1 0o n=N+1
This proves 2. U

We can finally prove the completeness of LP spaces.
Proposition 18.3 (L? is Complete). Let {f,} be a Cauchy sequence in LP.
Then there exists f € LP such that f, — f in LP.

Proof. Tt is enough to show that there exists a subsequence { f,, } such that f,,
is convergent in LP. Choose n; = 1. For each k, we can choose niy1 > ny
such that ||fnk+1 — fnka < 2% Then let f = fo, + D> ey (fn,c+1 - fnk). Since

220:1 ank+1 - fnka < 00, by Zl?;l (fnk+1 - fnk) € L? and is

convergent in LP. Observe f,, + Zk:l (fnk+1 — fnk) = fons., implying that
fn, = fae. andin LP. O

Corollary 18.4. If f,, — f in LP, then there exists a subsequence {f,,} such
that f,, — f a.e.

Proof. The proof of this is essentially the same as in the proof of
183l O
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Convergence almost everywhere does not imply convergence in L?.

Example 19.1. Take f, = Xjnnt1). Certainly f, — 0 almost everywhere.
However, [/ f,||, = 1 for every p, so that f, / 0 in LP.

Also, in general, convergence in measure does not imply convergence in LP.
Example 19.2. Take f, = nX[o,1)- Then f, — 0 in measure, but ||fn||p >1

for p € [1,00], so that f, 4 0 in LP.

If p = oo, then convergence in LP = L does not imply convergence in measure.
Example 19.3. Take f, = +. Then f, — 0 in L™, but

n({z € X|[fa(x)| > €}) =00
for every € and n € N.

However, if p € [1,00), we do have that convergence in L? implies convergence
in measure.

Lemma 19.4 (Chebyshev’s Inequality). If f is integrable, then

1 1
plle XI15@I > <5 [ e 51

Proof. Let S ={x € X ||f(x)] > A}. Then A < |f]| on S, so that

1 1
wu®) = [ xdu= [ \fldn< [ 1l uis)< 5 [ w5180

O
Proposition 19.5. If f,, — f in L?, then f,, — f in measure.
Proof. Fix € > 0. Let
Sn={z € X||fu(z) — f(@)] > e} = {z € X||fulz) — f(@)[" > '}
Then by Chebyshev’s inequality
S, ! Pdu = ! P
M( n)<€7p len_fl M_E?an_f”p'
Since f,, — f in LP, taking n — 0, it follows that f,, — f in measure. O

Proposition 19.6 (Uniform Integrability of One Function). Say f € L. Then
for every € > 0, there exists § > 0 such that for every A € ¥ such that u(A) < 4,

fA|f|du<e.
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Proof. Fix € > 0. Let S, = {z € X||f(z)| > a}. Let fo = xs,|f|- Because
f € LY, f is finite a.e., so that f, — 0 a.e. as a — oo. Further, f, < |f], so
that by Dominated Convergence,

lim |fldp = lim/XSa|f|du=/0d,u:0.
S., a—oo [y X

a—0o0

Hence we can find a > 0 such that [y [f]du <
any A € ¥ such that u(A) < §. Then

[ 11~ /AS |fdM+/AmSa fldu

g/\f|du+/ |f|du§/adu+E=au(A)+E<a5+E=e.
M N 2 2 2

. Choose § = 5. Consider

o

\GlleY

Sa

O

Note 19.7. The converse of [Proposition 19.6|is not true. Take consider f = 1.

Definition 19.8 (Uniform Integrable). A family of functions {fs}aca is uni-
formly integrable if for every ¢ > 0, there exists § > 0 such that for every A € ¥
such that p(A) <6, [, |faldp < € for every a € A.

Definition 19.9 (Tightness). A family of functions {fs}ac.a is tight if for all
€ > 0, there exists F. € X such that u(F.) < oo and [ |fa|dp < € for all
ac A '

Remark 19.10. A finite family of functions {f1,..., f,} in L' is uniformly
integrable and tight. Further, if { fo }ac4 and {gs}pep are uniformly integrable,
then {fo}taca U{gs}sen is uniformly integrable. A similar statement holds for
tightness.

If {fa}aca is a family of functions such that |f,| < F for some F € L!, then
{fataca is uniformly integrable. A similar statement holds for tightness.
Theorem 19.11 (Vitali’s Convergence Theorem). Let p € [1,00). Let f,, € L?
for each n. Then f, — f in L? if and only if f,, — f in measure and {fF} is
uniformly integrable and tight.

Proof. Suppose f, — f in measure and {fF} is uniformly integrable and tight.
Fix € > 0. By tightness, we can find F. € ¥ such that p(F.) < oo and
/ pe | fIP du < € for each n. By uniformly integrability, we can find § > 0 such

that for every A € ¥ with u(A) <6, [, [fnlP dp < € for each n € N.

Pick A = 5. Let S, = {x € X’\fn(;z:) ~ f@) > A%}. Since f, — f in

measure, we can find NV € N such that for all n > N, u(S) < 4.
By Jensen’s inequality, |f, — fm|” < 2271 (| ful” + | fin]”) for n,m € N. So

_ P p—1 P P P
Lflfn fm[Pdp <2 (/F5|fn| dqu/Fffml du><26. (3)
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Finally, we have for n,m > N,

/F; |f”_fm|pd“:/F€ﬁSn |fn—fm\pdu+/ o — FlP dp

F.nSe

< / o — Fl? dp

n

T or-1 </ ey Ifmfl”du>
F.nSy, F.NS¢
< [ 1fu= fuldu+ 2 (/ A+ | Adu)
Sn F.nSg F.NS¢
<! (/ sl dt [ Ifmlpdu>+2p/ Ady
Sn S.

n FE

< 2P+ 2P \u(F,) = 2P e,

This with shows that [ |fn — fm|Pdp < 3 -2Pe. It follows that
{fn} is a Cauchy sequence in LP. Since LP is complete, {f,} converges to some
g € LP. So by |Proposition 19.5 f,, — ¢ in measure. Since f,, — f in measure
as well, it is easy to check that f = g a.e. Thus, f,, — f in LP and f € LP.

Conversely, suppose f, — f in LP. By [Proposition 19.5| f, — f in measure.

Fix € > 0. Because L? is complete, f € LP. So fP € L', and by [Proposition 19.6]
we can find § > 0 such that for every A € ¥ with u(A) <4, [, [fI"du < &.
We can find N such that for n > N, ||f, — f|} < 5. Hence, for n > N,

71 _
/AlfnlpduS?’ </A|f|”du+/A|fn fl”du>

<o ([t - i) <e
This shows that {f?},>n is uniformly integrable. By |[Remark 19.10} it follows

that {fF},en is uniformly integrable.

Let S5 = {x € X||f(z)| <é}. By Chebyshev’s inequality, for each § > 0
1(S5) < 311 /7|, < oo. Surely xs, f? — 0 pointwise and |xs, fP| < |f?|. Since
fP € L', by Dominated Convergence, lims_.g f55 |f]P du = 0. So we can choose
§ > 0 such that fsa |f|Pdp < 5. Hence, for n > N,

Pd 7217—1 P L — flPd

/55|f| u< (/Séfl u+/sélf 7l u)
2p1< Pd n — p) €.
< /sz| w1 — £12) <

This shows that {f£},,>n is tight. By [Remark 19.10] it follows that {f?},en is
tight. U
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Today, we attempt to find condition under which functions are uniformly inte-
grable.

Lemma 20.1. Let f,, be measurable for n € N. Then the following are equiv-
alent:

1.

lim sup / [l dpt = 0:
A0 neN J{| £, |>A}

2. there exist an increasing super-linear ¢ : [0, 00) — [0, 00) such that

sup/ 60 |ful du < co.

neNJ X

Proof. Assume that condition 1 holds. Then we can find a A; > 0 such that
SUP,en f{lf W |ful dp < . Recursively, given Ay, we can find Agy1 > Ap + 1

such that sup,,cy f{\fn|>>\k+1} |fuldp < g Let ¢(x) = Y50 ox[0,a0¢ (2).
Note that

/X¢o|fn\du:/2|fn- Xiole © 1fal) dis = Z/Ifn|>kk}|fn|du<1'

Clearly ¢ is increasing. Further for each k, @ > k for x > A;. By design,
A — o0 as k — oo. Thus, it follows that ¢ is super-linear.

Conversely, suppose condition 2 holds. Fix € > 0. Then we can find A > 0 such
that for x > A, x < e¢p(x). Hence, for each n € N,

/ ‘fn|d,u<€/ ¢O|fn\d/l§6/¢O|fn\du§esup/gbofndu.
{Ifn>A} {Ifnl>A} X neNJx

Since sup,,cy [y ¢ © fn dp < 00, and sup,,cy f{lf ISA} | frn|dp is decreasing as A
increases, this implies condition 1. O

Theorem 20.2 (Conditions for Uniform Integrability). If either condition in
Lemma 20.1{ holds, then {f,} is uniformly integrable.

Proof. Without loss of generality, we may assume only the first condition holds.
Fix € > 0. We can find A > 0 such that sup,,cy f{‘f say [fnldp < 5. Choose

0 = 55. Pick any A € ¥ with u(A) < ¢. Then, writing S = {|fn| > A},

Jildn= [ Apaldn [ ifuld

<sup/|fm|du+/ ANdp < 5 +/>\du—7+)\u(A)
Ange 2 2
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Remark 20.3. If { f,, } is uniformly integrable and sup,,cx [ |fn| dit < 0o, then
the conditions of [Lemma 20.1] hold.

Corollary 20.4. If u(X) < oo and f, — f in measure and sup,,cy || fall, < oo
for p > 1, then f,, — f in L' (and in LY for ¢ < p).

Theorem 20.5 (Simple Functions are Dense in LP). Let p € [1,00). Simple
functions are dense in LP.

Proof. Choose any f € LP. By [Proposition 11.4] we can find simple functions
{sn} and {t,} such that s, * f* and t, S f~. Let r, = s, + t,. Then r, is
simple, |r,| < |f| and r,, — f pointwise.

Thus |r, — f|” — 0 pointwise. Also, |r, — f|P < (|ra| +|f])? < 2?P|f|P € L.
Hence, by Dominated convergence, [y |rn — f|[” du — [ 0dp = 0. Hence r, —
fin L. 0

Theorem 20.6 (C. is Dense in L?). Let p € [1,00). If X is a metric space and
there exists compact sets K, C K1 for n € N such that Uzo:l K, = X, then
C. is dense in LP.

Proof. Suppose X is compact. Consider any f € LP. Fix € > 0. For brevity, let
Ayg={z € X|f(z)# g(x)} for any two function f and g. Since fP € L, we
can find § > 0 such that for any A € ¥ with p(A) <9, [, |f|Pdu < €.

By Lusin’s Theorem, we can find a continuous g such that u(Ay,) < 6 and
lgl < |f] a.e. [Why?]. Hence, since X is compact, g € C.(X), and

/X |f—glP dp = /A |f—glPdp < 2”/ [fIPdp < 2°p(Agg) = 27€".
f.9

Afg
So [|f = gll, < 2e. Taking € — 0, it follows that C.(X) is dense in L?.

Now, consider the general case. Let f,, = xx, f. Certainly f— f, — 0 pointwise,
and |f — fu|? < 2|f|P € L'. So by Dominated convergence, f, — f in LP.
Hence, we can find n € N such that ||, — f||” < e. Restricting our attention to
the compact space K,,, by what we showed just above, we can find a continuous
function g supported on K, such that [lg — full, < € [Why?]. So g € Cc(X)
and by Minkowski’s inequality, ||g — f||, < [lg — fall, + [ fn — fIl, < 2¢. Taking
e — 0, it follows that C.(X) is dense in LP(X). O
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Definition 21.1 (Signed Measure). Let X be a set and ¥ a o-algebra of X.
Then p is a signed measure on (X, %) if

1. p: 3 — [—oo,00] or p: 3 — (—00,00];

2. p(®) =0;

3. for A; € ¥ disjoint, p (U2 Ai) = Y ooq 1(As).
Note 21.2. In the above definition, for disjoint 4; € ¥, Y72, u(A;) must be
absolutely convergent in order for that condition to make sense.

Example 21.3. If y; and po are two positive measures with at least one finite,
then p = 1 — ps is a signed measure.

Definition 21.4 (Positive and Negative Set). Let p be a signed measure. A
set P € X is positive if for every A C P, u(A) > 0. A set N € ¥ is negative if
for every A C N, u(A) <0.

Remark 21.5 (Monotonicity of Signed Measures). Let u be a signed measure.
Let P € ¥ be positive. Let A C P. Then u(A) C u(P). Similarly, if N € X is
negative and B C N, then u(B) > u(N).

Proof. Suppose p1(A) > p(P). Then pu(P—A) = u(P)—u(A) < 0, contradiction
the fact that P is positive. Hence p(A) < pu(P). A similar argument shows that
u(B) > (V). .
Definition 21.6 (Null Set). Let x4 be a signed measure. A set M € ¥ is null
if for every A C P, u(A) = 0.

Remark 21.7. If a set is positive and negative, then it is null.

Lemma 21.8. Let i be a signed measure. Let A € ¥ with |u(A)| < co. Then
there exists N € ¥ such that N C A, N is negative and u(N) < p(A).

Proof. Choose 61 = sup{u(B)|B C A, B € ¥}. Note that §; > 0 since § C A.
Then we can find By € ¥ such that By C A and u(B;) > min{g7 1}. Then
given Bi,...,B,, define §,4+1 = sup{u(B)|B €%, BC A—J_, B;}. Then

we can choose B, 41 € ¥ such that B, 11 € A and u(B41) > min{‘s’”’T“7 1}.

Let B = J;2, By, and let N = A — B. Note that p(B) > 0, since each §,, > 0.
Since NN B = 0, so that u(N)+ p(B) = u(A) = p(N) = u(A) — u(B) < u(A).
Note that, by choice, the B,’s are disjoint. Hence, u(B) = > o7 u(B,) < o
(since |u(A)| < oo and B C A). So 3o min {%,1} < oo, which implies that
6p — 0 as n — oo.

Consider any C C N. Then CC A— B C A— ngl By for each N € N. This

implies, by definition of B,, 11, that u(C) < d,41. Taking § — 0, it follows that
#(C) < 0. Thus, N is negative. O
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Theorem 21.9 (Hahn Decomposition). If u is a signed measure, there exists
N,P € X such that NNP =0, NUP = X, N is negative, and P is positive.
Such a decomposition is unique up to null sets.

Proof. Assume without loss of generality that u(X) > —oc.

Let a = inf {u(B)|B € £}. Note a < 0, since ) € X. So we can find sets
B,, € ¥ such that u(By,) > 0o, u(Bpt1) < pu(By) and u(B,) — .

implies that for each n, we can find negative B/ C B,, such that
w(BlL) < w(By). Let N = J.;_, Bl,. Note that N is negative. Hence, by
w(N) < u(BY) for each n. Also, a < p(N) by the definition of
a. Since u(By) — «, for every € > 0, we can find m such that u(B,,) < a +e€.
Hence a < u(N) < p(B),) < p(Bm) < a+ €. Taking € — 0, u(N) = a.

Let P =X - N. Let A C P. implies we can find negative
A" C A such that p(A’) < p(A). Since A’ U N is negative, monotonicity of the
absolute value of the measures hold in A’ U N (this is easy to see). Hence, if
w(A") < 0, then (N U A") < u(N) = a, which contradicts the definition of a.
So, u(A’) = 0. This implies u(A) > 0. Therefore, P is positive.

Suppose (N’, P’) and (N, P) are two such decomposition. Since N’ is negative,
N’ N P is negative. However, since P is positive N’ N P is also positive. This
implies that N’ N P is a null set, so that N — N = N’ N P is a null set as
well. Similarly, N — N’ is a null set. A similar argument shows that P’ — P and
P — P’ are null sets as well. This shows that the decompositions are unique up
to null sets. O

Theorem 21.10 (Jordan Decomposition). If u is a signed measure, there exists
positive measures ut and p~, at least one of which is finite, such that
Lop=pt —p;
2. the Hahn decomposition (N, P) of p is such that ut(N) == (P) = 0.
Such a decomposition (u, ™) is unique.

Proof. Let A € ¥. Define u(A) = p(ANP) and p= = —pu(ANN). Since P is
positive and N is negative, ™ and p~ are both positive measures. By additivity,
p = pt — p~. Furthermore, one of u(P) and p(N) must be finite, so that one
of uT and p~ is finite. This shows the existence of such a decomposition.

Uniqueness follows from the fact that the Hahn decomposition of p is unique
up to null sets, and u™ = u~ = v = v~ on p-null sets. O
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Definition 22.1 (Absolutely Continuous Measure). Let p and v be positive
measures on (X,Y). We say v is absolutely continuous with respect to p if for
every A € 3 such that u(A4) =0, v(A) = 0. We write v < p.

Example 22.2. Let x be a positive measure and g > 0. Define v(A4) = [, gdp.
Then v is a positive measure and if f € L'(X,v), then [, fdv = [, fgdp.
Theorem 22.3 (Radon-Nikodym). If 4 and v are o-finite positive measures and
v < p, then there exists a unique measurable g > 0 such that v(A) = [, gdu
for every A € X.

Proof. Suppose p and v are finite. Let F = {f >0 ‘ [y fdu<v(A)VAex}
Since 0 € F, F # 0. If f1, fo € F, then max{ f1, fo} is certainly measurable and
positive. Then max{f1, fo} € F, since

/Amax{fh f2} = /Aﬁ{flifz} fodu /Aﬂ{ﬁZfz} fudn
=v(An{fi < fo}) +v(An{fi 2 fo}) = v(4).

Suppose f,, € F with f,, < fr41. Since lim,_, f, is measurable and positive,
by Monotone Convergence, [, lim, o0 fr dpp = limy, o0 [, frndp < v(A).

Let o = supc 7 [ f dp. Note that 0 < o < v(X) < co. We can choose f, € F
such that lim,,_, . fX frndyw = . Then g, = max{f1,..., fn} € F. Further,
g = SUP,en fn = lim, 00 gn € F, by above.

Define vy(A) = v(A)— [, gdu. Since g € F, vy is a positive measure. Fix e > 0.
Then vy — eu is a signed measure. Let (P, N) be the Hahn decomposition of
vo — epr. We would like to show that (v — eu)(P) = 0. Let h = exp + g. Note
that g < h and

/hd,u:/ ed;LJr/gduSeu(AﬂP)Jr/gd,u
A ANP A A

gVO(AOP)Jr/Agd,ugVO(A)+/Agdu:V(A).

So, h € F. Since g < h, [yhdu = «a, so that [, (h — g)du = 0. This
implies h = g a.e. Therefore, xp = 0 a.e., so that pu(P) = 0. Therefore, since
v < pi, v(P) = 0. This implies that [, gdu = 0, so that vy(P) = 0. Hence
(vo — eu)(P) = 0. This implies that vg(A) < eu(A) for all A € ¥. Taking e — 0,
it follows that 19(A) = 0. As a result, v(A) = [, gdpu.

Suppose there are g1 and go such that v(A) = fA gr1du = fA godp for all A € 3.
This automatically implies that g = g2 a.e.

[e.9]

Suppose now that y and v are o-finite. Then X = J~, A, for some A, € ¥
with u(A,) and v(A,,) finite. Without loss of generality, we may assume that
A, C A,41. Define v,(4) = v(AN A,) and p,(A) = u(AN A,). Certainly
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Un <K fin, SO that there exists g, > 0 such that v, (A) = fA Gn dp, for all A € 3.
By uniqueness of the g¢,’s, we must have g, = gnyr1Xx4,- S50 gn < gnt1. Let
g = lim,, .o g,. Hence, by Monotone Convergence, for each A,

v(A) = lim v(ANA,) = lim v,(A) = lim [ g,du= / gdpu.
A A

n—oo n—oo n— oo

Definition 22.4 (Radon-Nikodym Derivative). The function g in the statement

of the theorem above is called the Radon-Nikodym derivative of v with respect

to u, and is also denoted g = Z—;.

Definition 22.5 (Total Variation). The total variation of a signed measure u
is |u|, which is defined as |u[(A) = ut(A4) + p~ (A) for all A € 3.

Definition 22.6 (Norm of Measure). The norm of a signed measure y is defined
as |pll = |pl(X).
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Definition 23.1 (Singular Measure). If p and v are positive measures on
(X,Y), we say p and v are mutually singular (u L v) if there exists A,B € &
such that AUB =X, ANB =0, and pu(B) =v(A) =0.

Example 23.2. If y is a signed measure, then pu™ 1 p~, where (u+, 47) is the
Jordan decomposition of .

Example 23.3. \ L §,, where §, is the delta measure with mass at x.
Theorem 23.4 (Lebesgue Decomposition). Let p be a positive measure and
v be a o-finite positive measure or a finite signed measure. Then there exists
unique signed measures v,. and vs such that v = va + Vs, |[Vac| < p, and
vl L .

Proof. Suppose v is a finite positive measure. Let N’ = {4 € 3| u(A) = 0}. Let

a = sup{v(A)| A € N}. Note that « < v(X) < co. So we can find 4; € N
such that v(4;) 7 « as i — oc.

Let N = J;2, A;. Note u(N) =0 and v(N) = lim;_,c (A;) = a. For A€ X,
define voc(A) = V(AN N°) and vs(A) = v(ANN). Clearly v = v, + vs.

Since v5(N°) =v(N°NN) =0 and u(N) =0, vs L p.
Consider any A € ¥ with u(A) =0. So AUN € N, so that

a>v(AUN)=v(ANN®) 4+ v(N)=v(ANN°) + a.

This implies that vac(A) = V(AN N€) = 0. Hence vy < pi.

Now suppose v is a o-finite positive measure. We can find B,, C B, 41 in X such
that | J2, B, = X and p(B,) < oo for each n. For each n and A € ¥, define
v"(A) = v(AN B,). Then v is a positive finite measure, so by above, we
can decompose (™ as (™ = ™ £ 8™ such that v\ and ™ are positive
finite measures and I/;(:CZ) < p and Vsn) 1 p. So for each n, there exists N,, such
that p(N,) = 0 and i (NE) =0. Let N =J;2, N,. Note u(N) = 0.

For A € ¥, define v, (A) = V(ANN®) and v5(A) = v(ANN). Certainly, vs L p.
Choose A € ¥ such that u(A4) = 0. Since X =J;~, B,, and B,, C B,,1,

Vac(A) =v(ANNC) = lim v(ANN°NB,)

n—oo

< lim v»(ANNSNB,)

n—oo

< nhﬁn;o vMW(ANNE) < nhﬁn;o v(M(A) =0
Hence, v, < u.

Finally, suppose v is a finite signed measure. Let (v,v7) be the Jordan de-
composition of v. v and v~ are finite positive measures, so that by above, we
can find Lebesgue decompositions v+ = v + v and v~ = v + v, such that
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vi, v, < pand vl vy L p. Choosing v, = vl — vy, and vs = v} — 1] gives
the desired decomposition of v.

It remains to show uniqueness. Suppose there were another decomposition v =
Nac + 1s such that n,c < pand ng L p. Then [Nac — vae| < 1 and |ns — vs| L p.
Further, since vac + Vs = Mac + Nsy Yac — Mac = Ns — Ms- Lhis implies that
[ns — vs| < p as well. Hence, this implies that |9, — vae] = 0, implying that
Nac = Vac- This proves the uniqueness of such a decomposition. O

As an application of the Radon-Nikodym derivative, we will (eventually) show
that the dual of L? is L9, where % + % =1 and p € [1,00). The measure y will
be o-finite.

Definition 23.5 (Bounded Operator). Let X and Y be Banach spaces. Let
T : X — Y be linear. Then T is bounded if there exists C' > 0 such that
|Tz[ly <C|lz|lx for all 2 € X, or sup,cx_ {0} % < 0.

Proposition 23.6 (Bounded Operator is Continuous). Let X and Y be Banach
spaces. Let T : X — Y be linear. Then T is continuous if and only if it is

bounded.

Proof. Suppose T' is bounded. Then there exists C' such that | Tz, < C|z| x
for all x € X. So for every 1,20 € X, ||Tx1 — T2y = ||T(z1 —22)|ly <
C'||z1 — 22| . So T is Lipschitz, and hence continuous.

Conversely, suppose T is continuous. Then we can find § > 0 such that for
llz|lx <0, ||[Tx|ly < 1. Hence, for any x € X, by linearity,

ox ) 2
T = 1Tz|ly <1=[Tz|y < < [|lzflx -
H 2zl fly  2l=lx v Yoo
Hence T is bounded. O

Note 23.7. Note that the above proof actually also show that T is continuous
if and only if it is Lipschitz.

45



24 October 28, 2013

Definition 24.1. Let X and Y be Banach spaces. Define
B(X,Y)={T:X — Y |T is bounded and linear} .

For T € B(X,Y), define

1T |ly

1T = '
zeX—{0} ”zHX

Proposition 24.2. B(X,Y) is a Banach space.

Proof. We must show that B(X,Y) is a complete normed vector space. If

|T|| = 0, then || Tz||,, = 0 for all € X — {0}, so that " = 0. If o > 0,

Hﬁz‘f”y = a”lﬁllly, so that taking supremums, ||oT|| = «||T||. Finally, for any
X X

S,T € B(X,Y) and z € X,
1S +T)(@)lly < ISzlly +1T=lly <SIzllx + 1Tl x = AST+ITID llzllx

which implies that [|.S + T'|| = sup,_ 7‘“5—“?‘(2)”" <||S||+||T||. Hence, B(X,Y)
X
is a normed vector space.

Let {T,,} be a Cauchy sequence of B(X,Y"). Consider any z € X. Then {T,,(x)}
is a Cauchy sequence in Y, so that T,,(x) — T'(z) for some T'(z) € Y. So for
a,f €R and z1,20 € X,

T(axzy + fag) + Th(axy + Bra) = aTp(x1) + BTn(22) — oT(x1) + BT (22).

Hence T is linear. Since T, is Lipschitz, T,, — T uniformly, so that T is
continuous, and thus bounded, and ||T;, — T|| — 0. Hence T € B(X,Y), and
B(X,Y) is Cauchy complete. O
Definition 24.3 (Dual of Space). The dual of a Banach space X is the space
X* = B(X,R).

Theorem 24.4 (Duality of LP). Let (X, %, u) a o-finite measure space. Let
p € [1,00). Pick ¢ such that % + % = 1. Then there exists a bijective linear
isometry between (LP)* and L9.

Proof. Let g € L9. Define T, : L? — R by Ty(f) = [, fgdu. Certainly Ty, is
linear and by Holder’s inequality, |T,(f)| < | fIl, [lgll,, so that T, is bounded.
Define ¢ : L? — (L?)* by ¢(g) = T,. Certainly ¢ is linear.

Hence T, € (LP)*. Also, by the Duality equality,

Ty (f)
rere—toy IIfl,

So ¢ is an isometry. If g,h € L? and ¢(g) = ¢(h), then ¢(g — h) = 0, so that
llp(g — h)H(L,,)* = 0. Since ¢ is an isometry, ||g — h||;, = 0, which implies g = h
in L9. Hence ¢ is injective.

- = |l
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It remains to show that ¢ is surjective. Suppose u(X) < 0. Pick any T € (LP)*.
We need to show that there exists a g € L7 such that T = ¢(g). For A € &,
p(A) < pu(X) < oo, so that x4 € LP. Define v(A) =T(xa).

Certainly v()) = T'(xy) = T(0) = 0. Suppose A4; € ¥ for i € N are disjoint. Let
B, =, 4;, and let A =J;2, A;. We have

n

V(Ba) = Tlxs,) = 3 T(ea) = 3 ulA),

i=1

Note that 0 < x5, < xB
Dominated Convergence,

wir < Xa € LP and X’ — X% pointwise. Then by

n

ZV(AZ') = nler;oZV(Ai) = lim v(B,) = lim XB, dv

n—oo n— oo b'e

- /XXAdu = v(A)

i=1 i=1

Hence v is a finite signed measure. Further, if A € ¥ such that p(A) = 0, then
X4 =0in L?, so that T'(x4) = 0, so that v(A4) = 0. Hence, v < p.

So by Radon-Nikodym, there exists g € L' such that v(A) = [, gdu. It suffices
to show that g € L9 and T(f) = [y fgdu for all f € LP.

We already have Tx 4 = [y xagdp = [, gdu for all A € ¥. Hence, by linearity,
Ts = fX sg du for all simple functions s. Thus, by |Corollary 17.6

Ts
lgll e = sup —— / Sgdu’ = sup el 1T} < oo
weri-goy 1500 1/ x seri—{oy |Isll s
s simple s simple
So g € LA.

Now consider any f € LP. Fix € > 0. By density of simple functions in L?, we
can find simple s such that |s| < |f| and ||s — f]|, < €. Since T" is continuous,
and thus bounded, |T'(s — f)| < C'||s — f||, < Ce for some constant C' > 0. So,

‘T(f)—/xfgdu‘<IT(f—S)I+‘T(8)—/ngdu’+‘/X(s—f)gdu’
< Cet0+ s~ I, lgll, < (C + e

Taking ¢ — 0, it follows that T'(f) = fX fgdu, and T = ¢(g). Hence ¢ is
surjective, and thus is a bijective linear isometry. O
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Today’s goal is to introduce product measures and determine when iterated
integrals are defined and can be switched. Let (X, X, u) and (Y, 7,v) be o-finite
positive measures.

Definition 25.1 (Product c-algebra). Let ¥ x 7 = {Ax B|Ae€ X, Be T}
Let X ® 7 = 0(X x 7) be the product o-algebra of ¥ and 7.

Lemma 25.2. Say C € ¥ ® 7. Then for every x € X and y € Y, define
5:(C)={yeY|(z,y)eC} and T,(C)={zeX|(z,y) €C}.

Then for every x € X andy € Y, S;(C) € 7 and T,,(C) € %.
Proof. Let

C={CeX@r|VeeXandyeY, S;(C)erand T,(C) € £}.

Consider any A € ¥ and B € 7. If x € A, then S,(A x B) = B € 7, and if
xz ¢ A, then S;(A x B) =0 € 7. Similarly, if y € B, then Ty(A x B) = A€ X,
and if y ¢ B, then Ty(A x B) = () € ¥. Hence, A x B € C. It follows that
COYxr.

Certainly (), X x Y € C. Consider any C' € C. Then for any z € X, S,(C¢) =
(Sz(C))° € 7. Similarly, for any y € Y, T,,(C°) = (T,(C))° € 3. Hence C° € C.

Suppose C,, € C for n € N. Let C = |Jo—, Cy,. For any z € X, S,(C) =
Uo— S+(Cn) € 7. Foranyy € Y, T, (C) = Uy, T,(Cy) € . So, U,—, Cy, €C.

So C is a o-algebra. Since C O X x 7, it follows that C O ¥®7. So,C = X®7. O

Note 25.3. The converse of the above lemma is false.
Lemma 25.4. Let fo(x) = v(9,(C)) and gc(y) = w(Ty(C)). Then for every
C eX®T, fc is Y-measurable and g¢ is T-measurable.

Proof. Suppose u(X) and v(X) are finite. Let
A={C e X ® 7| fc is ¥-measurable and g¢ is T-measurable} .

Let A€ ¥ and B € 7. Then fc = v(B)xa and gc = u(A)xp. Certainly fo is
Y-measurable and gc is 7-measurable. Hence A D ¥ x 7.

Suppose C,, € A such that C,, C C,41. Let C = Uzozl C,. Then note that
fc = sup,en fc,,- Since each of the f¢, is X-measurable, fo is Y-measurable
as well. A similar argument shows that gc is 7-measurable. So C' € A.

Suppose C, D € A such that C C D. Then, since v(X) < oo, fp—c = fp — fc.
Since fp and fo are Y-measurable, fp_ ¢ is Y-measurable. A similar argument
shows that gp_¢ is 7-measurable. So D — C € A.

Hence A is a A-system. Since A D ¥ x 7, which is a 7w-system, A O Y ® 7. Hence
A=YX®rT.
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Now, suppose u and v are o- ﬁnite Then we can ﬁnd F, C F,41 € X and
G CGnHCYsuchthatU F,=Xand ,~,G, =Y and u(F,) < oo
and u(G,) < co. Consider any C’ S Z@T Note that fc = limy 00 fon(F, xG)-
Let pn(A) = p(ANE,) and v, (B) = v(BNG,,) foreach A € ¥, B € Tand n € N.
Then what we showed above implies that fon(r, x,) is X-measurable. Hence.
fc is X-measurable. A similar argument shows that go is 7-measurable. O

Proposition 25.5 (Uniqueness of Product Measure). Let (X, X, u) and (Y, 7,v)
be positive o-finite measure spaces. Then there exists a unique measure 7 on
(X xY, ¥ ®7) such that 7(A x B) = u(A)v(B) for all A€ ¥ and B € 7.
Proof. We first show uniqueness. We know that two finite measures that agree
on a 7w-system agrees on the o-algebra generated by the m-system. Hence, by
taking limits of p and v restricted to subspaces of finite measure, it follows that
if two o-finite measures agree on a m-system, then they agree on the o-algebra
generated by the m-system. Therefore, since ¥ X 7 is a w-system, if two o-finite
measures agree on % X 7, then they agree on o(X x 7) = ¥ ® 7. Hence, they
agree everywhere. This proves uniqueness of such a product measure.

We know show the existence of such a product measure. By fco and
gc are measurable. Let 71(C) = [y fodu. So m(0) = [ fodp = [ 0dp = 0.
Further, if C,, € ¥ ® 7 are disjoint, then

[eS) N N )
1 <L_J1 Cn) = ]\;gnooﬂ'l (U Cn) = 1\}51100 z_:lﬂ'l(cn) = Z_:lﬂ'l(cn)
Hence, m; is a measure on X. Further, if A € ¥ and B € 7, then

m(Ax B) = [ v(B)xadn = w(A)w(B)

This shows the existence of such a product measure. O

Note 25.6. By defining m(C) = fY gc dv, the same argument as in the proof
above shows that my is a measure and m(A x b) = p(A)v(B) for A € ¥ and
B € 7. Moreover, uniqueness implies 7y = 7o, which implies

//Xcmde ) dp( //chydu z) dv(y),

which gives states that one may change the order of integrals for character-
istic functions! As one might suspect, this can be generalized, under certain
condition, other measurable and/or integrable functions.
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Definition 26.1. Let f : X x Y — [—00, 0] be measurable. Define Sf,(y) =
f(z,y) and T'fy(x) = f(z,y).

Lemma 26.2. Let f: X XY — R be measurable. Then Sf, is T-measurable
and T'f, is o-measurable for all z € X and y € Y.

Proof. For any open U C R, Sf1(U) = S,(f~1(U)). Since f~1(U) is T ® 7-
measurable, by S.(f~Y(U)) is T-measurable. Hence Sf, is 7-
measurable. A similar argument shows that 7'f, is ¥-measurable. O

Theorem 26.3 (Tonell’s Theorem) Suppose f : X xY — [0,00]. Then let
F(x) = [, Sfydv and G(y) = [ Tf,dp. Then F is Y-measurable and G is

T- measurable and
/Fd,u:/Gdz/:/ fdm.
X Y XxY

Proof. Suppose f = x¢ for some C € ¥ ® 7. From [Lemma 25.4] and [Note 25.6]
F =v(5;(C)) and is 7-measurable, and

/XXyXCdTr:/XdeM:/XV(S‘C(C))d'u(x):/XFdﬂ“

Hence, by linearity, F' is 7-measurable and [, , fdr = [, Fdu for non-
negative simple functions f.

We know we can ﬁnd non- negative simple functions s,  f pointwise. For
each n, define S, ( fX Sn(x,y)dv(y). Then by Monotone Convergence,
Snp(z) = F(x) for each x € X. Note that that 9, is simple for each n. So each
S, is T-measurable, by what we showed above. Hence, F' is also T-measurable.

Further, since s,, < s;,41, it follows that S,, < S;,41, so that, again, by Monotone

Convergence, [y Sndu — [y Fdp. By above, [y sndr = [y S, du for each
n, so that, again, by Monotone Convergence,

/ fdmr = lim Spdm = lim S dp = / Fdu.
XxY n—oo XxY n—oo
A similar argument shows G is Y-measurable and [ xy fdm= Jy Gadv. O

Theorem 26.4 (Fubini’s Theorem) Say f € L. Suppose fX v fhdm < oo

or fXfo dr < co. Let F(z) = [, Sfzdv and G(y) = [, Tf,du. Then
F(x) is defined p-a.e. and G( ) is defined v-a.e., F is E measurable and G is

T-measurable, and
/quz/GdV:/ fdm.
X Y XxY
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Proof. Without loss of generality, assume | Xxy f “dr < 0. Write f=f—f".
Define F+ fY f+ dv, F=(z) = [, S(f;)dv, G*(z) = [ T(f,])du,
and G~ f " ) dj. Then by Tonelli’s Theorem F + and F~ are 7-
measurable and G”r and G~ are Y-measurable, and [, fTdr = [ F*dp=

Jy Gtdvand [,  fdn= [ F du= [, G dv

Since [y, y f7dr = [ F~ dp < oo, F~ is finite p-a.e. Similarly, G~ is v-finite
a.e. Note that S(f;F)+S(f,) =Sfz. So F = F" —F~ and F is defined p-a.e.
Similarly, G is defined p-a.e. Hence, since I’ and F'~ are Y-measurable, F is
Y-measurable. Similarly, G is T-measurable. So, by linearity,

/ fdw:/ f+d7r+/ f7d7r:/ F*du%—/ Ffd,u:/ Fdypu.
XXy XxY XXy b's b's X

Similarly,
/ fdm = / Gdv.
X XY Y

Note 26.5. If f : R x R — R is m-measurable and it’s integral exists and
Fubini’s Theorem holds, it need not be that F(x) exist everywhere. Take

0 z#0o0ory=0
f(x,y): 1 N .
Y rz=0and y#0

O

Then [, f(0,y) dy does not exist.

Remark 26.6. Even if the iterated integrals exist and are finite, the product
integral may not exist and the interated integrals may not be equal. This was
done in one of the homeworks.
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We go over a few applications of iterated integrals and introduce convolutions.
Proposition 27.1. Let X be o-finite and f : X — [0, oo] be measurable. Then

/fdu:/ u({z € X | f(z) > a} dA(a).
X [0,00)

Proof. Consider the product space X x [0,00) with the measure p x A. Let
C={(z,y) € X xY |y < f(x)}. Remember y > 0. Then note that

7(C) = /X A(S+(C)) du(z) = /X f(@) du(z)

w(0) = [ W) axe) = [ ulyl < ra)}) axw)
By Tonelli’s theorem, we are done. O

Corollary 27.2. Say ¢ : [0,00) — [0, 00) is increasing, bijective, and C'. Then
[ootin=[ 0w ullaeX]5@) =) aNw).
X [0,00)
Proof. We already know that
[oofin=[ ulteeX|oos@) = yhare)
X [0,00)

- /[ )l € X |90 /@) 2 () D)
- /[ ) il € X1 1) 2 D),

where the second inequality comes from change of variables and the thirds comes
from the fact ¢ is increasing and bijective. O

Definition 27.3 (Convolution). Let f,g: R? — R be measurable. The convo-
lution of f and g is

fro= [ fa=vowiy= [ 1wy

Claim 27.4. If f,g € L', then f * ¢ is defined and is in L*.
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Proof.

/Rd”*g'“:/ﬂw‘/Rdf(w—y)g(y)dy

<[] e =l s
- / / (@ —y)llg(w)] de dy = / 11 L)l dy = 1171, Nl -
R4 JR4 Rd

dzx

Hence, ||f = gll, < |Ifll; lgll; < oo, and so f*g € L. O
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Theorem 28.1. Let f,g be measurable. Then | f* g, < ||f||p H9||q7 where
r,p,q € [l,00) and L +1 =%+%.

Proof. Let p’,q' and r’ be the Holder conjugates of p,q and r, respectively. By
the Duality equality, it is enough to show that for all h € L™,

A g(@)h(x) de < [All,.. 111, g, -

Without loss of generality, assume f,g,h > 0. Then f*g > 0. Let u be the
product measure A x X on R? x R?. For brevity, write X = R? x R?. Then

frg(x)h(z)de
Rd

/Rd [ @ =) @) dy de
() (oo )
< ([ strmar’ dA)'

P a Ll & -
< If1l; llgllg Hf||p 1alL - llgllg™ Wkl = 1£IL, gl 121, -

3
sk

P
7

g(y)* - fl@ —y) ¥ h(x) 7 - g(y) ¥ h(z)¥ dA

O

Definition 28.2 (Approximate Identities). Let ¢, : R? — [0,00] for each n.
We say {¢,} is an approzimate identity if

1. for every n, [pu pnd =1;
2. for every ¢ > 0, f{ly\>5} ¢nd— 0asn— oo.

Example 28.3. An example using balls is:
Xa01) _ Xp(o.p)™
A(B(0,2))  A(B(0,1))

Example 28.4. Another example is one where we scale a function. Let ¢ > 0,
¢ € L', and fRd ¢dX = 1. Then for every € > 0, chooise

¢n:

Definition 28.5. Say f : R? — [~o0, oc]. Define 7, f(z) = f(x — y).

o4



Remark 28.6. If f € L, then 7,f — f in L? as |y| — 0.

Proof. This was proven in Homework 8. O

Remark 28.7 (General Minkowski’s Inequality). Let (X, 3, u), (Y, 7,v) be two
o-finite measure spaces, p € [1,00], and f : X x Y — R is (X ® 7)-measurable.
Let F(z) = [, f(x,y)dv(y). Then

L N L o)
Proposition 28.8. Let f € LP for p € [1,00) and let {¢,,} be an approximate
identity. Then f x ¢, — f in LP.

Proof. Pick 0 < e < 1. Then we can find § such that for [y| <4, |7, f — f||, <e.
We have for 2 € R?,

fron(e) = 1) = [ f@—onw)dy -
R4
= [ rf = D)oo do
So by the general Minkowski’s inequality,
100 = Fl, < [ 7= £l 600 dy
~ [ Aty [ = Tl 6a) dy
{lyl<d} {ly|>6}
< edn(y) dy + 2 n(y) d
/{ oy /{ g 217l o)y

—e+2|/f, /{ el

Taking n — oo, and then € — 0, the result follows. O

Remark 28.9. The previous proposition is false for p = co. Take d = 1 and
b = ZHX[il 1] and f = xa, where A = J,,[2n,2n +1].

Proposition 28.10. Say f is measurable and fB(O n) |f] dx < oo for all n. Say
¢ € CX. Then f+x¢ e C=.

Proof. This was shown in Homework 11. O
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29 November 7, 2013

We will begin talking about Fourier series. The motivation for studying Fourier
series is the desire to express a function f as a series of sine and cosines:

f _ ZC einw
= ~ .

neN

Definition 29.1. For p € [1,00), define the space of L? periodic functions as

Lger:{f:R%(C’f(x—i—l):f(x) a.e., and /1|f|pdx<oo}
0

and define the norm of f € LP . to be

1
s, = [ 1P,

For f,g € L?.,, define their inner product to be

per’

1
(f.9) = /O fgd.

Definition 29.2. Define e, (z) = 27" ¢ L2

per*

Remark 29.3. Note that for n,m € Z, (em,en) = Omn, where ,,, is the
Kronecker delta. We eventually would like to express f as ), ., cnen, where
¢n, € C. Thus, to compute these coefficients, one might guess ¢, = (f, e,).

Definition 29.4 (Fourier Series Coefficient). Given f € Lger, for n € N, define
the nth Fourier coefficient of f to be

1 1
]:f(n):/o fa;(m:/o fe 2 dg.

Definition 29.5. Let Sy f = Zg:qv Ff(n)en.

Our goal is to show that Sy f converges to f in some sense as N — oo.

Lemma 29.6. Let Py = span{e_y,...,en}. Then f — Sy f is orthogonal to
Py. In particular, f — Sy f is orthogonal to Sy f.

Proof. Tt suffices to show that (f — Sy f,e,) =0forallmn € {—N,..., N}. Pick
any such n. Then

<faen> :]:f(n) = <SNf76n>'
Hence (f — Sy f,en) = 0. O

Corollary 29.7. ||Syf — f”Lfm < |lpn — fHL?,er for all py € Py.
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Proof. We can write py — f = Sy f— f+pn —Snf. Since Sy — f is orthogonal
to py — f and py — Sy f € Py, by the Pythagorean theorem,

low — fllgs, = IS8 F = Fllpa,, + low = Sllza > 1S = s, -

O

Corollary 29.8. If there exists py € Py for all N € N such that py — f in
L? ., then Sy f — f in L?

per’ per*

We can attempt to explicitly compte Sy f:

N ] 1 N )
SNf(LE) _ Z ]:f-(n)e%rmac _ / (f(y) Z e—27rm($—y)> dy.
n=—N 0 n=—N

Definition 29.9 (Dirichlet Kernel). Define Dy (x) := ZTIL_N e2mine,

Remark 29.10. We can explicitly write out Dy as:
sin(m(2N + 1)x)

Dy (@) = sin(mz)

Proof. This was done in Homework 11. O

So we can write Sy f = f *x Dy. Unfortunately, Dy is note an approximate
identity. (In fact, fol |Dn| 2 ~ In N). So we must try a different approach.
Definition 29.11 (Cesaro Sum). Define oy f = %27]21:—01 Snf. Certainly,
onf = (% Zf:];ol DN) x f, by linearity.

Definition 29.12 (Fejér Kernel). Define Fy = ZN_I Dy.

N n=0
Remark 29.13. We can explicitly write out Fy as:

Proof. This was done in Homework 11. O
Claim 29.14. Fy is an approximate identity.
Proof. This was done in Homework 11. O

Corollary 29.15. If f € LE , then oy f — f in LP.. If f is continuous, then
on f — f uniformly.

Proof. The first statement follows from [Proposition 28.8| O
Corollary 29.16. If f € L?, then Sy f — f in L2

Proof. Since onf € Py for all N, the result follows by and
3

o7



Corollary 29.17 (Riemann-Lebesgue). If f € L}, then Ff(n) = 0 as |n| —
0.

Proof. Let € > 0. Choose large N such that |jonyf — f]| < e Let g = f —
onf. Then f = g+ onf. Then F(n) = Fg(n) + F(onf)(n). For |n| > N,
Flonf)(n) = 0. Also |[Fg(n)| = ‘fol gen,dx‘ < folgdac = |lgll; < e. Hence
|Ff(n)|] < e. Taking e — 0 gives the result. O
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30 November 11, 2013

Corollary 30.1 (Parseval’s Identity). If f € L2, then ||f|,. = IF SNl 2z -

per’
Further, the map ¢ : f — F is a bijective linear isometry from L2 to (*(Z).

per

Proof. Since the e,’s are orthogonal to each other, by Pythagorean’s Theorem,
N N
2 2 2 2
w155, = 3 1P leally, = 35 177P
Taking N — oo, since Sy f — f in L2, we have Hf||2LQ = ||.7-"f||§2(z).

This also proves that ¢ is injective. Clearly ¢ is linear. It remains to show that
¢ is surjective. Take {a,} € (*(Z). Define f = _yane,. For 0 < M < N,
by orthogonality, we have

neN

2

> anen = > lanenll 2 = > anl

M<In|<N 12 M<[n|<N M<[n|<N
per

We know that 3 <\, <y [an |? is a convergent Cauchy sequence, so that the sum
DoM< |n|<N ||anen||Lger is Cauchy and convergent. So, >, Ha”e”HL%er < 00,

which implies that ° _, ane, converges in L2 . Hence, f € L2 . O

ne”Z per*

Definition 30.2 (Fourier Series of Measure). Say p is a finite measure on [0, 1].
Define

1
Fu(n) = /O &, dp.

Note 30.3. If du = fd\ and 71 f = f, then Fu(n) = fol enfdx=Ff(n).

Lemma 30.4. If f € L and £ € R, then F(7¢f)(n) = e, (§)F f(n).

per

Proof. By the periodicity of f,

F(ref)(n) = /0 flx —&)e ™o dy = /0 f(x)e_%i"(”@ =e,(§)Ff(n).

O
Lemma 30.5 (Riemann Lebesgue). If f € LL_, then Ff(n) — 0 as |n| — oco.

per»

Proof. Let £ = 5-. Then €,(¢) = —1. Hence, by [Lemma 30.4, F(7¢f)(n) =

—F f(n), so that
2Ff(n) = Ff(n) = F(ref)(n) = F (f = 7. 1) (n).

Hence, by Holder’s inequality, 2|F f(n)| < Hf — T%f’ L Taking n — oo gives
" Lper

the result. O
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31 November 13, 2013

Definition 31.1 (Weak Derivative). We say f € L2, has a weak derivative

per

Df, which is periodic with period 1, if for every ¢ € Cpg,,

/Olfgb'd:r:—/OlDf~¢dx.

Remark 31.2. If f € C', then Df exists and Df = f’. The converse if
false, however. Consider any periodic function that looks like the absolute-value
function.

Lemma 31.3. If f € L2, and Df € L., then F(Df)(n) = 2minF f(n).

per per>’

Proof. Since e=27ne ¢ Cpers S0 that

]:(Df)(n):/o Df(x)e,(x) dx:/o Df(z)e=2™n= 4y

. / ' F(@) (~2mine ") di = 2xinF f(n).
0

Proposition 31.4. If f,Df € L?_,, then

per>’

> (@ +n?)|Ffn)f < oo

neL
In other words, {]—"f(n)(l + nz)%} € 1%(7).

Proof. By Parseval’s identity, ), ., |Ff(n)]> = ||f||2LQ < 00. By|Lemma 31.3}

and applying Parseval’s identity again,

2

) 1 1
Yo InFfm)F =) 37 P =55 1Dfls, < oo
nez nez
And the result follows. O

Corollary 31.5. If f € L?_, D'f exists for i = 1,...,k for some k € N, and

per’

D'f € L2, for each i, then

3 (1+n) " 1Ff ) < oo

nez

In other words, {ff(n)(l + n2)§} € (3(Z).
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Definition 31.6 (Sobolev Space). Let s > 0. Define

fﬁmZ{fELirE:O+nﬂﬂfﬂm2<&%
neZ

and define the norm of f € Hj,, as

er

1l =3 (14 02)° |FF ()]

neE”L

Remark 31.7. If s € N, then Hj,, = {f € L2, | D* f exists and D*f € L?}.
Theorem 31.8 (Sobolev Embedding). If f € HS, and s > %, then f is con-

per
tinuous and || f||,, < C Hf||Hp9 for some constant C' independent of f.

Proof. We have

SUFm) =Y (1+02)? |1Ff(n)]-

nez nez

1
(1+n2)%

By Cauchy-Schwartz, this implies

1
2

Y IFfm)l < (Z (1+n?)* ]—'f(n)|2>2 (Z (1—1—1712)> "

nez neZ neZ

The first sum on the right is equal to || f||;. < oo, and the second sum is
per

equal to some finite C' since s > . So, 3=, ., |Ff(n)| < C ||fHHpe < 00. So,

by it follows that 22;7 v Ff(n)e,(z) = f uniformly. Since each

Ff(n)e,(x) 1s continuous, f is continuous as well. Finally, by the countable
triangle inequality, |f] < Znez | Ff(n)] <C ||fHHSer' O

Proposition 31.9 (Relich Lemma). If f, € H}, for each n € N such that
suppen | fnll e < 00, then for every s < t, there exists a subsequence { fy, }ren
Bor

: rs
that is convergence in HJ,.

Proof. This was done in Homework 12. O
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32 November 16, 2013

Definition 32.1 (Maximal Function). Let u be a finite signed Borel (and thus
regular) measure on R?. Define

_ o [HI(B(z, 7))
M) = e )

If dp = fd), then we also write M f(x) = Mu(z).

We would like an estimate of the form ||M f|, < C | f|,. However, this is false.
Take f = x[-1,1- Then

1 z €z <1
Mf= .
/ { L |x] > 1
EE

Lemma 32.2 (Vitali Coverling Lemma). Let A C R {Bj,...,By} be a
collection of balls that covers A. Then there exists a disjoint subcollection
{Bn,,...,Bn,} such that A C JI_, 3B,,.

Proof. Choose B,,, to be the ball of the largest radius. Among all balls that
don’t intersect with B,,,, let By, be the ball the the largest radius. Recursively
repeat this procedure. This procedure terminates since there are only a finite
number of balls to choose from. Let the balls chosen be B,,,, ..., By,.

Clearly By, ,..., By, are disjoint. If B; is not B,,, for any 7, then there exists
an i such that B; N B, # (). By choice of the B,,’s, it follows that Ty, > Tjs
where Tng, is the radius of Bm0 and r; is the radius of B;. Hence, by the triangle
inequality, 3B, 2 Bj;. O

Proposition 32.3. Let p be a finite signed Borel measure. Then for all a > 0,

d
A € X | Mp(a) > a}) < ]

Proof. Without loss of generality, we may assume g is a positive measure. Fix
a>0. Let S={x e X|Mu(z) > a}. Since u is finite and Borel, u is regular.

Hence, it suffices to show that A\(K) < % ||| for all compact K C S.

Choose any compact K C S. For each z € K, Mu(z) > «; so we can find
r(z) > 0 such that u(B(z,r(z))) > aX(B(z,r(z))). Now, {B(z,r(z))}sek
is a covering of K by balls. By compactness, we can find a finite subcover
{B(xn,r(z,))} 1<n<n for some N € N. By the Vitali covering lemma, we can
find a smaller subset {B(zy,, ,7(2n,,)) }1<m<nm of disjoint balls, where M € N,

such that K C Ui\rf:l B(zy,, ,3r(zy,,)). For brevity, let B, = B(zy,,,7(zn,,))-
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Corollary 32.4. If f € L', then for all a > 0,

Ao € X[Mf@) > ah) < ),
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33 November 18, 2013

Proposition 33.1 (Lebesgue Differentiation). If f € L', then for a.e. z € R?,

1
lim ———— d\ = .
r;nolo )\(B(LU, ’I“)) /B(:L’,T) f f(x)

Proof. 1t is enough to show that for a.e. x,

SﬁhﬂzhygpMB&J»A%w”ﬂwf@N@0-

Observe that if g is continuous, then Qg = 0. Fix ¢ > 0. Let o > 0. Consider
S = {m € R4 ‘ Qf > a}. By density of continuous functions in L', we can find
a continuous g such that ||f —g||; <e. Let h = f —g. Then

Qf (@) = Qg + h)(x) < Q(x) + Qh(z) = Qh(a).
Hence

A(S) < A{Qh > a}) < A{Mh + || > a})

<3 ({an>S))+a({Im1>5})

. 3d 2
h Z A 4
< == hlly + = kil (4)
2.34 42
< ———k,
Q

where (4]) follows from [Corollary 32.4|and Chebyshev’s inequality. Hence, taking
e — 0, it follows that A(S) = 0. Taking o — 0, we have A\({Q2f > 0}) = 0.

Hence, Qf = 0 a.e., and the result follows. O

Definition 33.2 (Derivative of Measure). Let p be a positive o-finite Borel
measure or a signed finite Borel measure on R%. For simplicity, we assume that
1 is positive, finite and Borel. Define

. (B(z,7))
P = A B )

Note 33.3. If 4 < )\, by Radon-Nikodym, there exists an f € L'(R%, \) such
that du = fdX. So

for a.e. z € R? by Lebesgue differentiation. So Dy = ?Tl)f for a.e. z € RY.
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Example 33.4. What happens when 1 L A7 For an example, consider y = dy,
the delta measure with mass of 1 concentrated at 0. Then

Dio() = {o z#0

o =0

Proposition 33.5. If p is finite and Borel, then
1. if p < A, then Dy = % A-a.e.;
2. if p L A, then Dy =0 Ma.e. and D|u| = oo p-a.e.

Proof. Suppose pu < A. By [Note 33.3, we already have Dy = 3—‘; A-a.e.

Suppose 1 L A. Then we can find N € B(R?) such that A(N) = 0 and
w(N€¢) =0. Fix € > 0. Since p is finite and Borel, |/ is regular. So we can find
compact K C N such that |u|(N — K) <.

Let 0(A) = p(ANK) and v(A) = p(AN K°). Observe that ||v|| < e. For every
x ¢ K, we can find an small enough r > 0 such that B(x,r) C K¢, so that
o(B(z,r)) =0. Do(z) =0 on K°. Since A\(K) =0, it follows Do (z) = 0 A-a.e.
Let

Bl 1 p(B(z,7))
Dp(z) := hl’TIlj(l)lp NB@.r)

Then Dy < Do + Dv = Dv A-a.e., so that

A{Dp > a}) < AX{Dv > a}) < X{Mv > a}) < % || < %{je.

Taking € — 0, it follows that Dy = 0 A-a.e.
The proof that D|u| = co p-a.e. was done in Homework 13. O
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34 November 20, 2013

Corollary 34.1. Let p be a finite Borel measure. By Lebesgue decomposition,
we can write = fiac + s Where ppe < A and pug L A. Then Dy exists A-a.e.
and Dy = 3—’; A-a.e.

Corollary 34.2. Let A € L(R?) be given. Then for M-a.e. m,

lim AMANB(z,r))

PN By A

Remark 34.3. Recall H, is the Hausdorfl measure of dimension «. Define

C(a) = % Let A C RY be given with H,(A) € (0,00). Then

1.
o HalA N B(.1)

=0 for H,-a.e. A.
lim Clayre 0 for a.e. T &

2. For a.e. x € A, we have

lim sup

27(17

3. There exists A with H, < co and 0 < a < d such that
Hy(AN B(x,r))

ligs;olp Clayre <1H, ae..
and H (ANB
lim inf M =0
T—00 C(a)re

Lemma 34.4 (Differentiation of Functions). We restrict our attention to R.
Pick f € L*. Define F(z) = [ fdx. Then F(z) is differentiable almost every-
where and F’ = f almost everywhere.

Proof. The following is a “proof.” The reader should attempt to fix it.

F(zx+h)—F(x—h) 1

= Jim, 2h = MB(z, h) /B(M) far=f(z) ae.

O

The goal here eventually is to prove the Fundamental Theorem of Calculus; we
would like a result of the form

b
/ f1dx = f(b) — f(a).

Note 34.5. f being differentiable almost everywhere does not imply that f’ €
L'[a,b]. For an example, take f(z) = Inz. We have f' = } ¢ L1[0,1].
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Note 34.6. f being differentiable almost everywhere and f’ € L' does not
imply f(b) — f(a) = f: f"dz. For an example, let f be the Devil’s Staircase.
Definition 34.7 (Absolute Continuity). We say a function f : [a,b] — R is

absolutely continuous if for every € > 0, there exists a § > 0 such that if
{(zi,¥i) }ien is a collection of disjoint intervals such that >, |z — y| < 0,

then D oy | f(zs) — flui)| <e

Proposition 34.8. If f is absolutely continuous, then f is continuous.

Note 34.9. Continuity does not imply absolute continuity. For an example,
consider the Cantor function.

Claim 34.10. Let f € L'[a,b]. Define F(z f fdx. Then F is absolutely
continuous.

Proof. Fix e > 0. f is uniformly integrable, so there exists a § > 0 such that for
all A € ¥ such that p(A) <, we have [, |f|d\ < e. Consider any collection of
disjoint intervals {(x;, y;) }ien such that Y 7, [2i—yi| <. Let A =, cn(i, 44),
so that pu(A) < 6. Then

/ fdx

Z |F (7)) — F(y:)| =

ieN €N

<XJ.

€N i»Yi)

|f\d)\:/A|f\d)\<e.
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35 November 22, 2013

Today’s goal is to eventually prove the Fundamental Theorem of Calculus.

Lemma 35.1. Assume f : [a,b] — R is absolutely continuous. Suppose f is
strictly increasing. Then f is differentiable almost everywhere, f € L', and for
every z,y € [a,b] with z < y, we have

/ Cpdn= 1) - ().

Proof. Define p(A) = A(f(A)). Since f injective, it is easy to check that u is a
measure. The reader should check that u is a regular measure.

We claim that g < A. Let A C [a, b] such that A\(A) = 0. Pick K C A compact.
We need to show that u(A) = 0. By regularity of p, it suffices to show that
w(K) = 0 for all K C A. Pick € > 0. Pick ¢ in the definition of absolute
continuity of f. Then there exist a finite collection of disjoint intervals {(x;,y;)}
such that K C U, (x4, ) and ), |x; —y;| < d. Thus Y, |f(zs) — f(y:)| < € and
p(U;(xi,93)) < e. So u(K) < e. Taking € — 0, we have p(K) = 0. Thus pp < A.
By Radon-Nikodym, there exists g € L'[a, b] such that du = gd\. Then for all
z,y € [a,b] with z <y, p((z,y)) = f(y) — f(x). Thus, [} gd\ = f(y) — f(x).

Since f(z) = f(a)+ [ gdA, |Lemma 34.4] implies that f is differentiable almost

everywhere and [/ = g. O

Lemma 35.2. Assume f : [a,b] — R is absolutely continuous. Suppose f is
increasing. Then f is differentiable almost everywhere, f € L', and for every
x,y € la,b] with x < y, we have

/ Cpdn= 1) - ().

Proof. Let g(x) = f(x) + . Then g is strictly increasing and absolutely con-

tinuous. implies that g is differentiable almost everywhere and
g € L'a,b] and g(y) — g(z) = [ ¢’ dX. Then g(z) = g(a) + [ g’ dX implies
fx)+z=f(a)+a+ fax g’ d)\. Thus f is differentiable almost everywhere and
f'=g -1 =

Before we can finally prove the more general form of the Fundamental Theorem
of Calculus, we prove a claim.

Claim 35.3. Assume f : [a,b] — R is absolutely continuous. There exist
functions g and h such that f = g — h where g and h are absolutely continuous
and increasing

Proof. Let F(x) be the variation of f on [a,z]; that is,

N
F(x) = supz |f(z:) — f(ziz1)| wherea =20 <21 < -+ <y =T.
i=1
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We claim F' is also finite and absolutely continuous.

Pick € = 1. Then we can find § > 0 such that if {(z;,y;)} is a collection of
disjoint intervals such that ), |z} — yj| < d, then >, |f(x]) — f(y))| < e = 1.
Any partition a = g < 21 < ... < &y = z of [a, z] with mesh size less than §
has Y20 [ f(x:) — f(wi—1)] < 252 -1 < oo. Note that

N
F(y) — F(z) = supZ|f(xi) — f(zi—1)| wherex =29 <1 < - <2y =9.
i=1

Set g = F + %f and h = F — %f. The reader should check that g and h are
increasing and absolutely continuous. O

Theorem 35.4 (Fundamental Theorem of Calculus). Assume f : [a,b] — R is
absolutely continuous. Then f is differentiable almost everywhere, f € L', and
for every z,y € [a,b] with z < y, we have

/ Cpdn= 1) - ().

Proof. The function f is absolutely continuous. We need to show that [’ €

L'[a,b] and f(z) = f(a) + [ f'dA\. By [Claim 35.3| we can find absolutely
continuous and increasing functions g and h such that f = g — h. By
[35.2] and linearity, the result follows. O

Remark 35.5. f has bounded variation if and only if f = g — h where g and
h are increasing.

Remark 35.6. If f absolutely continuous, then f has bounded variation.
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36 November 25, 2013

Today’s goal is to study change of variables.

Theorem 36.1 (Change of Variables). Let U,V C R? be open. Let ¢ : U — V
be C* and bijective. Let f € L*(V). Then

/Vfd)\:/Ufogb|detV¢|d/\,

where V¢ is the Jacobian of ¢, which is equal to (0;¢;)i;.

Proof. Define pu(A) = A(¢(A)). Since ¢ bijective, p defines a measure on V.
From the questions on pull-back measures from the Homework, we know that

/Ufoasdu:/vfdx,

To prove the theorem, only need to show that du = |det V| dA.
Lemma 36.2. y < A
Lemma 36.3. du/d)\ = |det V¢|.

Note that these two lemmas together imply the Theorem.
Proof of Lemma|36.5 Because p < A,

WBr) L NOBLE)
d\ =0 N(B(z,v)) r—=0 XB(z,r))

We need to show that the limit on the right-hand side is equal to |det V).

Step 1: Without loss of generality, assume x = 0 and ¢(x) = 0. Suppose

V¢(0) = I. Then lim,_,o % — 1

Proof. Let € > 0. Then there exists rg such that |z| < rg = [|[Vo(z)—1I|| <,
where for T € R¥*? we define ||T'|| = sup ‘Hj;fll'

Let g(z) = ¢(x) — x. Note that |g;(x)| < €|z|, because
9i(x) = g;(x) = g;(0) =mvr (Vg);(y) - = < [[Vglllx] < efx] when |z| <ro

So ¢(x) € B(0, (1e)[z]) = B(0, (1 — €)|z).

Thus, for r < rg,
(1= e)IA\(B(0,7)) < A(B(B(0,7))) < (1)A(B(0, 7))

where the middle expression follows from the bijectivity of ¢.

Taking € — 0, we have proven Step 1. O
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Step 2: Say V¢(0) =T and T is invertible. Then

_AMo(B(0,7))) _
i B, et
Proof. Set 1 = T~ o ¢. Then V¢(0) = I. Step 1 implies that

o AW(B(0,1)

MABO)) -

Thus,

Step 3: What if V¢(0) is not invertible? Then |det V$(0)| = 0, so we need
to show that lim,_, % = 0. Let T = V¢(0). We know detT = 0 and
T(RY) is a subset of a (d — 1)-dimensional subspace. You check the rest. The

idea is that ¢(z) lies within € of that subspace. O

Proof of Lemma[36.2 Step 1: p is regular (You check: U = U2, K, K,
compact)

Step 2: Pick A C U and A(A) = 0. We need to show that p(A) = 0.

By Step 1, it suffices to show that p(K) = 0 for all K C A compact. (Note: As
you will see by the end of the proof, we do not need that u is regular. We can
use the infinite version of the Vitali covering lemma.)

Pick ¢ > 0. We know that there exists U 2 K with A(U) < e. Since K is
compact, there exists ¢ < oo such that sup,¢x |[VertVe(z)| < c. For all X in
K, there exists r(x) such that B(z,r(z)) C U and

sup [|[Vo(z)]| < 2e.
z€B(z,r(x))

Compactness lets us pass to a finite subcover. Then by Vitali, there exist
T1,...,o, € K suchthat {B(x;,7(z;)) }1<i<n disjoint and J C UY; B(x;, 7(z4)).

You check: p(B(x;,7(x;))) < 10cA(B(x;,7(x;))) implies that

w(K) < p(UB(x4,3r;)) < 3710eA(U) < 3410ce.

The two lemmas together imply the theorem. O
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37 December 2, 2013

Fourier Transform
Definition 37.1. Let f € L'(R?) be given. Define the Fourier transform f by

fQ) = [ fapemisee
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