1. Find the general solution of the PDE
\[\partial_x u + x\partial_y u = x^2 + y. \]

2. Suppose \(u \) satisfies the PDE
\[\partial_t^2 u + 3\partial_x \partial_t u - 2\partial_x^2 u = 0, \]
and as \(x \to \pm \infty \) we have \(u \to 0, \partial_t u \to 0 \) and \(\partial_x u \to 0 \). Find a constant \(\alpha \in \mathbb{R} \) so that the energy \(E \) defined by
\[E(t) = \int_{-\infty}^{\infty} \left[(\partial_t u(x,t))^2 + \alpha (\partial_x u(x,t))^2 \right] dx \]
is constant as a function of time.

3. Let \(u(x,t) \) be the population of a virus at the point \(x \in \mathbb{R}^3 \) and time \(t \). Suppose the virus population changes as follows:

 (i) Due to overcrowding, the virus migrates from regions of high population to regions of low population at a rate proportional to the gradient. Namely, the rate of migration in a particular direction \(v \) equals \(\kappa (\nabla u) \cdot v \), where \(\kappa > 0 \) is some constant.

 (ii) The rate at which the virus population grows (due to reproduction and death) equals \(u(1-u) \).

 Find a PDE satisfied by the function \(u \). [For half credit, you may instead do the one dimensional version of this question assuming \(x \in \mathbb{R} \).]

4. Let \(D \subseteq \mathbb{R}^3 \) be a sphere of radius 1. We claim that there exists only one real number \(\alpha \in \mathbb{R} \) so that the PDE
\[-\Delta u = 1 \text{ in the domain } D \text{ with Neumann boundary conditions } \hat{n} \cdot \nabla u = \alpha \text{ on } \partial D \]
has a solution. Find \(\alpha \).