21-372 PDE: Midterm 1.

April $1^{\text {st }}, 2013$

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 3 questions and 20 points.
- You may use any result from class or homework PROVIDED it was proved independently of the problem you want to use the result in. (You must also CLEARLY state the result you are using.)
- Difficulty wise: $Q 1 \approx Q 2(a)<Q 2(b)<Q 2(c) \ll Q 3$.

1. The solution to the PDE $\partial_{t} u-\frac{1}{2} \partial_{x}^{2} u=0$ for $x \in(0, \infty), t>0$ with initial data $u(x, 0)=f(x)$ and Neumann boundary conditions $\partial_{x} u(0, t)=0$ is given by the formula

$$
u(x, t)=\int_{0}^{\infty} f(y)[G(x-y, t)+G(x+y, t)] d y, \quad \text { where } G(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t}
$$

Using this, find a formula for the solution to the $\operatorname{PDE} \partial_{t} u-\frac{1}{2} \partial_{x}^{2} u=g$ for $x \in(0, \infty), t>0$ with initial data $u(x, 0)=f(x)$ and Neumann boundary conditions $\partial_{x} u(0, t)=0$.
2. Let f be a 2π periodic function such that that f is differentiable and f^{\prime} is continuous. Let c_{n} be the complex Fourier coefficients of f, and d_{n} be the complex Fourier coefficients of f^{\prime}.
(a) State (with out proof) a relation between the c_{n} 's and $\int_{-\pi}^{\pi}|f|^{2}$.
(b) Find and prove a relation between c_{n} and d_{n}. [This was a question on your homework. In keeping with the exam instructions, please provide a self contained proof here.]
(c) Find a number $a>0$ such that

$$
\int_{-\pi}^{\pi}|f|^{2} \leqslant a \int_{-\pi}^{\pi}\left|f^{\prime}\right|^{2}
$$

for all differentiable, 2π-periodic functions f such that f^{\prime} is continuous and $\int_{-\pi}^{\pi} f(x) d x=0$. Prove your answer. [Hint: This is part (c) of a question! This is also VERY DIFFERENT from the Raleigh quotient question on the homework.]
3. Let f be a function such that $\int_{0}^{1}|f|^{2}<\infty$. Suppose u satisfies the heat equation $\partial_{t} u-\partial_{x}^{2} u=0$ for $x \in(0,1)$, $t>0$ with initial data $u(x, 0)=f(x)$ and Dirichlet boundary conditions $u(0, t)=u(1, t)=0$. Let $M(t)=$ $\max \{|u(x, t)| \mid x \in[0,1]\}$. Does $\lim _{t \rightarrow \infty} M(t)$ exist? If yes compute its value. Prove your answer. [Hint: Use separation of variables helps. Partial credit: I'll give you 3 points for a correct solution assuming $\sum\left|A_{n}\right|<\infty$, where A_{n} 's are the appropriate Fourier coefficients of f. Alternately, I'll give you 4 points for a correct solution if you instead assume f is bounded.]

