Math 720: Homework.

Do, but don't turn in optional problems. There is a firm 'no late homework' policy.

Assignment 1: Assigned Wed 09/05. Due Wed 09/12

Following the notation of Cohn, I use λ to denote the Lebesgue measure.

1. For each of the following sets, compute the Lebesgue outer measure.
(a) Any countable set.
(b) The Cantor set.
(c) $\{x \in[0,1] \mid x \notin \mathbb{Q}\}$.
2. (a) If $V \subseteq \mathbb{R}^{d}$ is a subspace with $\operatorname{dim}(V)<d$, then show that $\lambda(V)=0$.
(b) If $P \subseteq \mathbb{R}^{2}$ is a polygon show that area $(P)=\lambda(P)$.
3. (a) Say μ is a translation invariant measure on $\left(\mathbb{R}^{d}, \mathcal{L}\right)$ (i.e. $\mu(x+A)=\mu(A)$ for all $A \in \mathcal{L}, x \in \mathbb{R}^{d}$) which is finite on bounded sets. Show that $\exists c \geqslant 0$ such that $\mu(A)=c \lambda(A)$.
(b) Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an orthogonal linear transformation, and $A \in \mathcal{L}$. Show that $T(A) \in \mathcal{L}$ and $\lambda(T(A))=\lambda(A)$. [Hint: Express T in terms of elementary transformations.]
4. (a) Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and $\rho: \mathcal{E} \rightarrow[0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}$ and $\rho(\emptyset)=0$. For any $A \subseteq X$ define

$$
\mu^{*}(A)=\inf \left\{\sum_{1}^{\infty} \rho\left(E_{i}\right) \mid E_{i} \in \mathcal{E}, \text { and } A \subseteq \bigcup_{1}^{\infty} E_{j}\right\}
$$

Show that μ^{*} is an outer measure.
(b) Let (X, d) be any metric space, $\delta>0$ and define $\mathcal{E}_{\delta}=\{B(x, r) \mid x \in X, r \in$ $(0, \delta)\}$. Given $\alpha>0$ define $\rho(B(x, r))=c_{\alpha} r^{\alpha}$, where $c_{\alpha}=\pi^{\alpha / 2} / \Gamma(1+\alpha / 2)$ is a normalization constant. Let $H_{\alpha, \delta}^{*}$ be the outer measure obtained with this choice of ρ and the collection of sets \mathcal{E}_{δ}. Define $H_{\alpha}^{*}=\lim _{\delta \rightarrow 0} H_{\alpha, \delta}^{*}$. Show H_{α}^{*} is an outer measure and restricts to a measure H_{α} on a σ-algebra that contains all Borel sets. The measure H_{α} is called the Hausdorff measure of dimension α. [Don't reprove Caratheodory.]
(c) If $X=\mathbb{R}^{d}$, and $\alpha=d$ show that H_{d} is the Lebesgue measure.
(d) Let $S \in \mathcal{B}(X)$. Show that there exists (a unique) $d \in[0, \infty]$ such that $H_{\alpha}(S)=\infty$ for all $\alpha \in(0, d)$, and $H_{\alpha}(S)=0$ for all $\alpha \in(d, \infty)$. This number is called the Hausdorff dimension of the set S.
(e) Compute the Hausdorff dimension of the Cantor set.

Details in class I left for you to check. (Do it, but don't turn it in.)

* We saw in class $\ell(I)=I$ for closed cells. Show it for arbitrary cells.
* Show that $m^{*}(a+E)=m^{*}(E)$ for all $a \in \mathbb{R}^{d}, E \subseteq \mathbb{R}^{d}$.
* Show that the arbitrary intersection of σ-algebras on X is also a σ-algebra.
* Verify that the counting measures and delta measures are measures.
* When proving Caratheodory, we proved in class Σ is a σ-algebra, and that $\left.\mu^{*}\right|_{\Sigma}$ is finitely additive. Show that $\left.\mu^{*}\right|_{\Sigma}$ is countably additive.

Assignment 2: Assigned Wed 09/12. Due Wed 09/19

1. Let (X, Σ, μ) be a measure space. For $A \in P(X)$ define $\mu^{*}(A)=\inf \{\mu(E) \mid E \supseteq$ $A \& E \in \Sigma\}$, and $\mu_{*}(A)=\sup \{\mu(E) \mid E \subseteq A \& E \in \Sigma\}$.
(a) Show that μ^{*} is an outer measure.
(b) Let $A_{1}, A_{2}, \cdots \in \mathcal{P}(X)$ be disjoint. Show that $\mu_{*}\left(\bigcup_{1}^{\infty} A_{i}\right) \geqslant \sum_{1}^{\infty} \mu_{*}\left(A_{i}\right)$. [The set function μ_{*} is called an inner measure.]
(c) Show that for all $A \subseteq X, \mu^{*}(A)+\mu_{*}\left(A^{c}\right)=\mu(X)$.
(d) Let $A \subseteq \mathcal{P}(X)$ with $\mu^{*}(A)<\infty$. Show that $A \in \Sigma_{\mu} \Longleftrightarrow \mu_{*}(A)=\mu^{*}(A)$.
2. Here's an alternate (cleaner) approach to proving $\mathcal{L}=\mathcal{B}_{\lambda}$. We do it by proving a stronger statement than necessary.
(a) If $A \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ show that for any $\varepsilon>0$ there exists two sets C, U such that $C \subseteq A \subseteq U, C$ is closed, U is open and $\lambda(U-C)<\varepsilon$.
(b) For $A \in \mathcal{L}\left(\mathbb{R}^{d}\right)$, show that that there exists an F_{σ}, F and a G_{δ}, G such that $F \subseteq A \subseteq G$ and $\lambda(G-F)=0$. Conclude $\mathcal{B}_{\lambda}=\mathcal{L}$.
3. Let $A \in \mathcal{L}\left(\mathbb{R}^{d}\right)$. Prove every subset of A is Lebesgue measurable $\Longleftrightarrow \lambda(A)=0$.
4. (a) Prove $\mathcal{B}\left(\mathbb{R}^{m+n}\right)=\sigma\left(\left\{A \times B \mid A \in \mathcal{B}\left(\mathbb{R}^{m}\right) \& B \in \mathcal{B}\left(\mathbb{R}^{n}\right)\right\}\right)$.
(b) Prove $\mathcal{L}\left(\mathbb{R}^{m+n}\right) \supsetneq \sigma\left(\left\{A \times B \mid A \in \mathcal{L}\left(\mathbb{R}^{m}\right) \& B \in \mathcal{L}\left(\mathbb{R}^{n}\right)\right\}\right)$.
(c) Show $\mathcal{L}\left(\mathbb{R}^{2}\right) \supsetneq \mathcal{B}\left(\mathbb{R}^{2}\right)$.
5. Find $E \in \mathcal{B}(\mathbb{R})$ so that for all $a<b$, we have $0<\lambda(E \cap(a, b))<b-a$.

We say $\mathcal{A} \subseteq \mathcal{P}(X)$ is an algebra if $\emptyset \in \mathcal{A}$, and \mathcal{A} is closed under complements and finite unions. We say $\mu_{0}: \mathcal{A} \rightarrow[0, \infty]$ is a (positive) pre-measure on \mathcal{A} if $\mu_{0}(\emptyset)=0$, and for any countable disjoint sequence of sets sequence $A_{i} \in \mathcal{A}$ such that $\bigcup_{1}^{\infty} A_{i} \in \mathcal{A}$, we have $\mu_{0}\left(\bigcup_{1}^{\infty} A_{i}\right)=\sum_{1}^{\infty} \mu_{0}\left(A_{i}\right)$.
Namely, a pre-measure is a finitely additive measure on an algebra \mathcal{A}, which is also countably additive for disjoint unions that belong to the algebra.
6. (Caratheodory extension) If \mathcal{A} is an algebra, and μ_{0} is a pre-measure on \mathcal{A}, show that there exists a measure μ defined on $\sigma(\mathcal{A})$ that extends μ_{0}.

Optional problems, and details in class I left for you to check.

* Prove any open subset of \mathbb{R}^{d} is a countable union of cells. Conclude $\mathcal{L} \supseteq \mathcal{B}$.
* Show that the cardinality $\mathcal{B}(\mathbb{R})$ is the same as that of \mathbb{R}, however, the cardinality of $\mathcal{L}(\mathbb{R})$ is the same as that of $\mathcal{P}(\mathbb{R})$. Conclude $\mathcal{B}(\mathbb{R}) \subsetneq \mathcal{L}(\mathbb{R})$. [There are of course other ways to prove this.]
* If $A_{i} \in \Sigma$ are such that $A_{i} \supseteq A_{i+1}$, show that $\mu\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$, provided $\mu\left(A_{1}\right)<\infty$. Given an example to show this is not true if $\mu\left(A_{1}\right)=\infty$.
* We saw in class $\lambda(A)=\sup \{\lambda(K) \mid K \subseteq A \& K$ is compact $\}$ for all bounded sets $A \in \mathcal{L}$. Prove it for arbitrary $A \in \mathcal{L}$.
* Show that there exists $A \subseteq \mathbb{R}$ such that if $B \subseteq A$ and $B \in \mathcal{L}$ then $\lambda(B)=0$, and further, if $B \subseteq A^{c}$ and $B \in \mathcal{L}$ then $\lambda(B)=0$.

Assignment 3: Assigned Wed 09/19. Due Wed 09/26

1. Let X be a topological space, and μ be a regular Borel measure on X. Show that X has a maximal open set of measure 0 . Namely, show that there exists $U \subseteq X$, such that U open set, $\mu(U)=0$ and further for any open set $V \subseteq X$ with $\mu(V)=0$, we must have $V \subseteq U$. [The complement of U is defined to be the support of the measure μ, and denoted by $\operatorname{supp}(\mu)$.]
2. Let $\Sigma \supseteq \mathcal{B}\left(\mathbb{R}^{d}\right)$, and μ be a regular measure on $\left(\mathbb{R}^{d}, \Sigma\right)$. Suppose $A \in \Sigma$ is σ-finite (i.e. $A=\cup_{1}^{\infty} A_{n}$, and $\left.\mu\left(A_{n}\right)<\infty\right)$. Show that $\mu(A)=\sup \{\mu(K) \mid K \subseteq$ A is compact $\}$. [This remains true if we replace \mathbb{R}^{d} with any Hausdorff space.]
3. Let μ, ν be two measures on (X, Σ). Suppose $\mathcal{C} \subseteq \Sigma$ is a π-system such that $\mu=\nu$ on \mathcal{C}.
(a) Suppose $\exists C_{i} \in \mathcal{C}$ such that $\bigcup_{1}^{\infty} C_{i}=X$ and $\mu\left(C_{i}\right)=\nu\left(C_{i}\right)<\infty$. Show that $\mu=\nu$ on $\sigma(\mathcal{C})$.
(b) If we drop the finiteness condition $\mu\left(C_{i}\right)<\infty$ is the previous subpart still true? Prove or find a counter example.
4. Let $\kappa \in(0,1)$. Does there exist $E \in \mathcal{L}(\mathbb{R})$ such that for all $a<b \in \mathbb{R}$, we have $\kappa(b-a) \leqslant \lambda(I \cap(a, b)) \leqslant(1-\kappa)(b-a)$? Prove or find a counter example. [I'm aware that this looks suspiciously like a homework problem you already did. Also, this problem has a short, elegant solution using only what we've seen in class so far.]
5. For $i \in\{1,2\}$, let $\left(X_{i}, \Sigma_{i}, \mu_{i}\right)$ be two measure spaces with $\mu_{i}\left(X_{i}\right)<\infty$. Define $\Sigma_{1} \otimes \Sigma_{2}=\sigma\left\{A_{1} \times A_{2} \mid A_{i} \in \Sigma_{i}\right\}$.
(a) Let $x_{1} \in X_{1}$ and $A \in \Sigma_{1} \otimes \Sigma_{2}$. Let $S_{x_{1}}(A)=\left\{x_{2} \in X_{2} \mid\left(x_{1}, x_{2}\right) \in A\right\}$, and $T_{x_{2}}(A)=\left\{x_{1} \in X_{1} \mid\left(x_{1}, x_{2}\right) \in A\right\}$. Show that $S_{x_{1}}(A) \in \Sigma_{2}$ and $T_{x_{2}}(A) \in \Sigma_{1}$.
(b) If $A \in \mathcal{P}\left(X_{1} \times X_{2}\right)$ is such that for all $x_{i} \in X_{i}, S_{x_{1}}(A) \in \Sigma_{2}$ and $S_{x_{2}}(A) \in$ Σ_{1}. Must $A \in \Sigma_{1} \otimes \Sigma_{2}$?
(c) Show that there exists a measure ν on $\left(X_{1} \times X_{2}, \Sigma_{1} \otimes \Sigma_{2}\right)$ such that for all $A_{i} \in \Sigma_{i}$ we have $\nu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)$.
6. (An alternate approach to λ-systems.) Let $\mathcal{M} \subseteq P(X)$. We say \mathcal{M} is a Monotone Class, if whenever $A_{i}, B_{i} \in \mathcal{M}$ with $A_{i} \subseteq A_{i+1}$ and $B_{i} \supseteq B_{i+1}$ then $\bigcup_{1}^{\infty} A_{i} \in \mathcal{M}$ and $\bigcap_{1}^{\infty} B_{i} \in \mathcal{M}$. If $\mathcal{A} \subseteq P(X)$ is an algebra, then show that the smallest monotone class containing $\overline{\mathcal{A}}$ is exactly $\sigma(A)$. [You should also address existence of a smallest monotone class containing \mathcal{A}.]

Optional problems, and details in class I left for you to check.

* Let X be a second countable locally compact Hausdorff space, and μ be a Borel measure on X that is finite on compact sets. Show that μ is regular.
* Is any σ-finite Borel measure on \mathbb{R}^{d} regular?
* Show that any λ-system that is also a π-system is a σ-algebra.
* If Π is a π-system, then $\lambda(\Pi)=\sigma(\Pi)$. (We only proved $\lambda(\Pi) \subseteq \sigma(\Pi)$.)

Assignment 4: Assigned Wed 09/26. Due Wed 10/03

1. Let $f: X \rightarrow \mathbb{R}$ be measurable, and $g: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue measurable. True or false: $g \circ f: X \rightarrow \mathbb{R}$ is measurable? Prove or find a counter example.
2. Let (X, Σ) be a measure space, and $f, g: X \rightarrow[-\infty, \infty]$ be measurable. Suppose whenever $g=0, f \neq 0$, and whenever $f= \pm \infty, g \in(-\infty, \infty)$. Show that $\frac{f}{g}: X \rightarrow[-\infty, \infty]$ is measurable. [Note that by the given data you will never get a 'meaningless' quotient of the form $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$. The remainder of the quotients (e.g. $\frac{1}{\infty}$) can be defined in the natural manner.]
3. Let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions such that $\left(f_{n}\right) \rightarrow f$ almost everywhere (a.e.). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel function.
(a) If for a.e. $x \in X, g$ is continuous at $f(x)$, then show $\left(g \circ f_{n}\right) \rightarrow g \circ f$ a.e.
(b) Is the previous part true without the continuity assumption on g ?
4. Let $C \subseteq \mathbb{R}^{d}$ be convex. Must C be Lebesgue measurable? Must C be Borel measurable? Prove or find counter examples. [The cases $d=1$ and $d>1$ are different.]
5. Let (X, Σ, μ) be a measure space, and $\left(X, \Sigma_{\mu}, \bar{\mu}\right)$ it's completion. Show that $g: X \rightarrow[-\infty, \infty]$ is Σ_{μ}-measurable if and only if there exists two Σ-measurable functions $f, h: X \rightarrow[-\infty, \infty]$ such that $f=h \mu$-almost everywhere, and $f \leqslant g \leqslant h$ everywhere.
6. Let X be a metric space, $\Sigma \supseteq \mathcal{B}(X)$ a σ-algebra on X, and μ a regular finite measure on (X, Σ). Let $f: X \rightarrow \mathbb{R}$ be measurable.
(a) For any $\varepsilon>0$ and $i \in \mathbb{N}$, show that there exists finitely many disjoint compact sets $\left\{K_{i, j}| | j \mid \leqslant N_{i}\right\}$ such that

$$
\mu\left(X-\bigcup_{j=-N_{i}}^{N_{i}} K_{i, j}\right)<\frac{\varepsilon}{2^{i}}, \quad \text { and } \quad f\left(K_{i, j}\right) \subseteq\left[\frac{j}{2^{i}}, \frac{j+1}{2^{i}}\right)
$$

(b) (Lusin's Theorem) For any $\varepsilon>0$ show that there exists $K_{\varepsilon} \subseteq X$ compact such that $f: K_{\varepsilon} \rightarrow \mathbb{R}$ is continuous, and $\mu\left(X-K_{\varepsilon}\right)<\varepsilon$. [HinT: Let $K_{\varepsilon}=\bigcap_{i=1}^{\infty} \bigcup_{|j| \leqslant N_{i}} K_{i, j}$. Define $g_{i}: K_{\varepsilon} \rightarrow \mathbb{R}$ by $g_{i}(x)=j / 2^{i}$ if $x \in K_{i, j}$ and $|j| \leqslant N_{i}$. Show $g_{i}: K \rightarrow \mathbb{R}$ is continuous and $\left(g_{i}\right) \rightarrow f$ uniformly on K_{ε}.]

A standard extension theorem now shows that for any $f: X \rightarrow \mathbb{R}$ measurable and $\varepsilon>0$, there exists $g_{\varepsilon}: X \rightarrow \mathbb{R}$ continuous such that $\mu\left\{f \neq g_{\varepsilon}\right\}<\varepsilon$.

Optional problems, and details in class I left for you to check.

* Show that $f: X \rightarrow[-\infty, \infty]$ is measurable if and only if any of the following conditions hold
(a) $\{f<a\} \in \Sigma$ for all $a \in \mathbb{R}$.
(c) $\{f \leqslant a\} \in \Sigma$ for all $a \in \mathbb{R}$.
(b) $\{f>a\} \in \Sigma$ for all $a \in \mathbb{R}$.
(d) $\{f \geqslant a\} \in \Sigma$ for all $a \in \mathbb{R}$.
* Let $f:[0,1] \rightarrow[0,1]$ be the Cantor function, and $g(x)=\inf \{f=x\}$. Show that f is continuous, and the range of g is the Cantor set. Are f, g Hölder continuous? If yes, what are the largest exponents α, β for which f, g are respectively Hölderα and Hölder- β continuous.

Assignment 5: Assigned Wed 10/03. Due Wed 10/10

1. (a) Suppose $I \subseteq \mathbb{R}^{d}$ is a cell, and $f: I \rightarrow \mathbb{R}$ is Riemann integrable. Show that f is measurable, Lebesgue integrable and that the Lebesgue integral of f equals the Riemann integral.
(b) Is the previous subpart true if we only assume that an improper (Riemann) integral of f exists? Prove or find a counter example.
2. (a) Let (X, Σ, μ) be a complete measure space, $f: X \rightarrow[-\infty, \infty]$ be measurable and suppose $\int_{X} f d \mu$ is defined. If $g: X \rightarrow[-\infty, \infty]$ is such that $f=g$ a.e., then show $\int_{X} f d \mu=\int_{X} g d \mu$.

All the convergence theorems we've seen so far hold if we replace pointwise convergence with a.e. convergence. I ask you to prove one below; you should verify the others on your own.
(b) Suppose $\left(f_{n}\right)$ is a sequence of measurable functions, $f_{n} \geqslant 0$ a.e., and $\left(f_{n}\right) \rightarrow$ f a.e. on E. Show that $\lim \inf \int_{E} f_{n} d \mu \geqslant \int_{E} f d \mu$.
3. Let $f: \mathbb{R}^{d} \rightarrow[-\infty, \infty]$ be an integrable function such that $\int_{I} f d \lambda=0$ for all cells I. Must $f=0$ a.e.? Prove or find a counter example.
4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a measurable function. We define the Laplace Transform of f to be the function $F(s)=\int_{0}^{\infty} \exp (-s t) f(t) d t$ wherever defined.
(a) If $\int_{0}^{\infty}|f(t)| d t<\infty$, show that $F:[0, \infty) \rightarrow \mathbb{R}$ is continuous.
(b) If $\int_{0}^{\infty} t|f(t)| d t<\infty$, show that $F:[0, \infty) \rightarrow \mathbb{R}$ is differentiable.
(c) If f is continuous and bounded, compute $\lim _{s \rightarrow \infty} s F(s)$.
5. (a) Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be linear, and $A \in \mathcal{L}$. Show that $\lambda(T(A))=|\operatorname{det}(T)| \lambda(A)$. [Hint: Check it separately for $\operatorname{det}(T)=0$. For $\operatorname{det}(T) \neq 0$, write T as a product of elementary transformations, and check the result for cells. (This should have been on HW1, but I 'inadvertently' added the assumption that T was orthogonal.)]
(b) (Linear change of variable) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be integrable, $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ an invertible linear transformation, and $E \in \mathcal{L}\left(\mathbb{R}^{d}\right)$. Show that

$$
\int_{T^{-1}(E)}(f \circ T)|\operatorname{det} T| d \lambda=\int_{E} f d \lambda .
$$

Optional problems, and details in class I left for you to check.

* For simple functions, check that $\int_{E} s$ is well defined.
* For positive functions check $f \leqslant g \Longrightarrow \int_{E} f \leqslant \int_{E} g$.
* For arbitrary integrable functions, check $\int_{E} \alpha f d \mu=\alpha \int_{E} f d \mu$.
* If $\int_{X} f d \mu<\infty$, then show $f<\infty$ a.e.
* If $\int_{X}|f| d \mu=0$, then show that $f=0$ a.e.
* Prove the following generalization of Fatou's Lemma: If $f_{n} \geqslant 0$ are measurable, then $\liminf \int_{E} f_{n} d \mu \geqslant \int_{E} \lim \inf f d \mu$.
* Finish the proof of showing $\int_{X} g d \mu=\int_{Y} g \circ f d \mu_{f^{-1}}$. Use this to give a quick proof that $\int_{\mathbb{R}^{d}} f(x+y) d x=\int_{\mathbb{R}^{d}} f(x) d x$. (This trick also helps with Q5(b).)

Assignment 6: Assigned Wed 10/10. Due Never
In view of your Midterm on 10/17, this homework is optional.

* If $\mu(E)=0$, and $f: E \rightarrow[-\infty, \infty]$ is any measurable function, then show directly from the definition that $\int_{E} f d \mu=0$.
* Let μ be the counting measure on \mathbb{N}, and $f: \mathbb{N} \rightarrow \mathbb{R}$ a function.
(a) If $\sum_{1}^{\infty}|f(n)|<\infty$, then show that $\sum_{n=1}^{\infty} f(n)=\int_{\mathbb{N}} f d \mu$.
(b) If the series $\sum_{n=1}^{\infty} f(n)$ is conditionally convergent, show that $\int_{\mathbb{N}} f d \mu$ is not defined.
* Let (X, Σ, μ) be a measure space and $f: X \rightarrow Y$ some function. Define $\tau=$ $\left\{A \subseteq Y \mid f\left(f^{-1}(A)\right)=A, \& f^{-1}(A) \in \Sigma\right\}$. For $A \in \tau$, define $\mu_{f}(A)=\mu(f(A))$. Show that $\left(Y, \tau, \mu_{f}\right)$ is a measure space. If $g: Y \rightarrow[-\infty, \infty]$ is integrable, can you write $\int_{Y} g d \mu_{f}$ in terms of an integral over X with respect to μ ?
* Let $g \geqslant 0$ be measurable, and define $\nu(A)=\int_{A} g d \mu$. Show that ν is a measure, and $\int_{E} f d \nu=\int_{E} f g d \mu$.
* Let $f \sim g$ if $\mu\{f \neq g\}=0$. For $p \in[1, \infty)$, define
$\mathcal{L}^{p}=\left\{f: X \rightarrow \mathbb{R}\right.$ measurable, such that $\left.\int_{X}|f|^{p} d \mu<\infty\right\} \quad$ and $\quad L^{p}=\mathcal{L}^{p} / \sim$.
For $f \in L^{p}$, pick any $f^{\prime} \in f$, and define $\|f\|_{p}=\left(\int_{X}\left|f^{\prime}\right|^{p} d \mu\right)^{1 / p}$. Show that this is well defined and satisfies all the axioms of a Banach space except completeness and the triangle inequality. [Completeness and the triangle inequality are of course true but are harder to prove. I will prove them in class.]
* Show that $f \leqslant \operatorname{esssup}_{X} f$ almost everywhere.
* For $p \in[0,1)$ show that you need not have $\|f+g\|_{p} \leqslant\|f\|_{p}+\|g\|_{p}$.
* Prove Hölder's inequality if $p=1$ or $p=\infty$.
* (a) Prove $\|f\|_{1}=\sup _{\|g\|_{\infty}=1} \int_{X} f g d \mu$.
(b) If X is σ-finite, then show $\|f\|_{\infty}=\sup _{\|g\|_{1}=1} \int_{X} f g d \mu$.
* (a) (Young's inequality) Let $x, y \in \mathbb{R}, p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$. Show that $|x y| \leqslant \frac{|x|^{p}}{p}+\frac{|y|^{q}}{q}$, and equality holds if and only if $|x|^{p}=|y|^{q}$.
(b) Use Young's inequality to give an alternate proof of Hölder's inequality.
* (a) Suppose φ is a strictly convex function and $\mu(X)=1$. For what functions can you have equality in Jensen's inequality. Namely, when is $\varphi\left(\int_{X} f d \mu\right)=$ $\int_{X} \varphi \circ f d \mu$?
(b) For what functions f, g can you have equality in Hölder's inequality?

Assignment 7: Assigned Wed 10/17. Due Wed 10/24

1. (a) If $\mu(X)<\infty, 1 \leqslant p<q$, show $L^{q}(X) \subseteq L^{p}(X)$ and the inclusion map from $L^{q}(X) \rightarrow L^{p}(X)$ is continuous. Find an example where $L^{q}(X) \subsetneq L^{p}(X)$. [Hint: Show $\|f\|_{p} \leqslant \mu(X)^{\frac{1}{p}-\frac{1}{q}}\|f\|_{q}$]
(b) Let $\ell^{p}=L^{p}(\mathbb{N})$ with respect to the counting measure. If $1 \leqslant p<q$ show that $\ell^{p} \subsetneq \ell^{q}$. Is the inclusion map $\ell^{p} \hookrightarrow \ell^{q}$ continuous? Prove your answer.
2. (a) Suppose $p, q, r \in[1, \infty]$ with $p<q<r$. Prove that for all $f \in L^{p} \cap L^{r}$, $f \in L^{q}$. Further, find $\theta \in(0,1)$ such that $\|f\|_{q} \leqslant\|f\|_{p}^{\theta}\|f\|_{r}^{1-\theta}$.
(b) If for some $p \in[1, \infty), f \in L^{p}(X) \cap L^{\infty}(X)$ show that $\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}$. [This sort of justifies the notation $\|\cdot\|_{\infty}$.]
(c) Let $p_{0} \in(0, \infty], \mu(X)=1$ and $f \in L^{p_{0}}(X)$. Prove $\lim _{p \rightarrow 0^{+}}\|f\|_{p}=$ $\exp \left(\int_{X} \ln |f| d \mu\right)$.
3. For any $p \in[1, \infty]$, show that simple functions are dense in $L^{p}(X)$. That is, for any $\varepsilon>0, f \in L^{p}(X)$ show that there exists a simple function $s \in L^{p}(X)$ such that $\|f-s\|_{p}<\varepsilon$.
4. Let X be a metric space and μ be a regular Borel measure on $(X, \mathcal{B}(X))$. Assume further and $X=\bigcup_{1}^{\infty} U_{n}$, where U_{n} is open, \bar{U}_{n} is compact, and $\bar{U}_{n} \subseteq U_{n+1}$.
(a) For any $p \in[1, \infty)$, show that continuous compactly supported functions are dense in $L^{p}(X)$. [You may assume the Tizete extension theorem from topology, which guarantees (in a more general situation) that if $C \subseteq X$ is closed and $f: C \rightarrow \mathbb{R}$ is continuous, then there exists a continuous function $F: X \rightarrow \mathbb{R}$ such that $F=f$ on C.]
(b) Is the previous part true for $p=\infty$? Prove or find a counter example.
5. (a) Suppose $p \in[1, \infty)$, and $f \in L^{p}\left(\mathbb{R}^{d}, \lambda\right)$. For $y \in \mathbb{R}^{d}$, let $\tau_{y} f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be defined by $\tau_{y} f(x)=f(x-y)$. Show that $\left(\tau_{y} f\right) \rightarrow f$ in L^{p} as $|y| \rightarrow 0$.
(b) What happnes for $p=\infty$?

Optional problems, and details in class I left for you to check.

* If $p_{i}, q \in[1, \infty]$ with $\sum_{1}^{N} \frac{1}{p_{i}}=\frac{1}{q}$, show that $\left\|\prod_{1}^{n} f_{i}\right\|_{q} \leqslant \prod\left\|f_{i}\right\|_{p_{i}}$.
* Let $0<p<q<\infty$. Then $L^{p} \nsubseteq L^{q}$ iff X contains sets of arbitarily small, positive, measure. Also, $L^{q} \nsubseteq L^{p}$ iff X contains sets of arbitarily large (but finite) measure.
* (Vitali's convergence theorem.) Let $f_{n}, f \in L^{1}$. Show that $\left(f_{n}\right) \rightarrow f$ in L^{1} if and only if (1) $\left(f_{n}\right) \rightarrow f$ in measure, (2) $\left\{f_{n}\right\}$ is uniformly integrable, and (3) For all $\varepsilon>0$ there exists $F \in \Sigma$ with $\mu(F)<\infty$ such that $\int_{F^{c}}\left|f_{n}\right|<\varepsilon$. [I proved the forward direction in class, and sketched the reverse. Fill in the details of the reverse.]

Assignment 8: Assigned Wed 10/24. Due Wed 10/31

1. Suppose $\Sigma=\sigma(\mathcal{C})$, where $C \subseteq \mathcal{P}(X)$ is countable. If μ is a σ-finite measure and $1 \leqslant p<\infty$, show that $L^{p}(X)$ is seperable (i.e. has a countable dense subset).
2. Let $e_{n}(x)=e^{2 \pi i n x}, X=[0,1]$. For what $p \in[1, \infty]$ does $\left\{e_{n}\right\}$ have a convergent subsequence in $L^{p}(X, \lambda)$? Prove it.
3. (a) Suppose $\lim _{\lambda \rightarrow \infty} \sup _{n} \int_{\left|f_{n}\right|>\lambda}\left|f_{n}\right| d \mu=0$. Show that there exists an increasing funciton φ with $\varphi(\lambda) / \lambda \rightarrow \infty$ as $\lambda \rightarrow \infty$, $\operatorname{such}^{\prime}$ that $\sup _{n} \int_{X} \varphi\left(\left|f_{n}\right|\right)<\infty$.
(b) Suppose $\left\{f_{n}\right\}$ is uniformly integrable, and $\sup _{n} \int\left|f_{n}\right|<\infty$. Show that $\lim _{\lambda \rightarrow \infty} \sup _{n} \int_{\left|f_{n}\right|>\lambda}\left|f_{n}\right|=0$.
(c) Show that the previous part fails without the assumption $\sup _{n} \int\left|f_{n}\right|<\infty$.
4. Recall we defined the variation of μ by $|\mu|=\mu^{+}+\mu^{-}$, and the total variation by $\|\mu\|=|\mu|(X)$. (You should check that these are well defined.)
(a) If μ, ν are two signed measurs on X, show that $|\mu+\nu|(A) \leqslant|\mu|(A)+|\nu|(A)$.
(b) Let \mathcal{M} be the space of all finite signed measures on (X, Σ). Show that \mathcal{M} with total variation norm (i.e. with $\|\mu\|=|\mu|(X))$ is a Banach space.
(c) Show that $\left(\mu_{n}\right) \rightarrow \mu$ if and only if $\left(\mu_{n}(A)\right) \rightarrow \mu(A)$ uniformly in $A, \forall A \in \Sigma$.
5. (a) For a signed measure, we define $\int_{X} f d \mu=\int_{X} f d \mu^{+}-\int_{X} f d \mu^{-}$. Suppose $\left(f_{n}\right) \rightarrow f,\left(g_{n}\right) \rightarrow g$, and $\left|f_{n}\right| \leqslant g_{n}$ almost everywhere with respect to $|\mu|$. If $\lim \int_{X} g_{n} d|\mu|=\int_{X} g d|\mu|<\infty$, show that $\lim \int_{X} f_{n} d \mu=\int_{X} f d \mu$.
(b) Suppose $f, f_{n} \in L^{1}$, and $\left(f_{n}\right) \rightarrow f$ almost everywhere. Show that $\lim \int \mid f_{n}-$ $f|d| \mu \mid=0$ if and only if $\lim \int\left|f_{n}\right| d|\mu|=\int|f| d|\mu|$.

Optional problems, and details in class I left for you to check.

* Show $L^{\infty}(\mathbb{R})$ is not separable.
* Say μ is a signed measure, and $A_{i} \in \Sigma$ are pariwise disjoint. If $\left|\mu\left(\bigcup A_{i}\right)\right|<\infty$, then must $\sum_{1}^{\infty}\left|\mu\left(A_{i}\right)\right|<\infty$? Prove, or find a counter example.
* If $g \in L^{1}(X, \mu)$, let $\nu(A)=\int_{A} g$. Show that ν is a signed measure on X, and $\int f d \nu=\int f g d \mu$.
* (a) Prove the Hanh decomposition is unique, up to sets of measure 0. [That is show $X=P_{1} \cup N_{1}$ and $X=P_{2} \cup N_{2}$, then $P_{2}=P_{1}-A \cup B$, where all subsets of A, B have measure 0 , and a similar statement for N.]
(b) Show that the measures μ^{+}and μ^{-}we defined in class are independent of the Hanh decomposition used to define them.
(c) We say μ and ν are mutually singular if $X=A \cup B$ where $A, B \in \Sigma$ with $A \cap B=\emptyset$, and for all measurable $A^{\prime} \subseteq A, B^{\prime} \subseteq B$ we have $\mu\left(A^{\prime}\right)=0$ and $\nu\left(B^{\prime}\right)=0$. Show that the Jordan decomposition is unique if the measures are assumed to be mutually singular.
* If $\mu=\mu_{1}-\mu_{2}$ where μ_{1} and μ_{2} are positive, show that $\mu_{1} \geqslant \mu^{+}$and $\mu_{2} \geqslant \mu^{-}$.

Assignment 9: Assigned Wed 10/31. Due Wed 11/07

1. (a) Let ν be a finite (positive) measure. Prove $\nu \ll \mu \Longleftrightarrow \forall \varepsilon>0, \exists \delta>0$ э $\mu(A)<\delta \Longrightarrow \nu(A)<\varepsilon$. [This sort of justifies the name "absolutely continuous".]
(b) Is the previous part true if ν is not finite? Prove or find a counter example.
2. (a) Let ν_{1} and ν_{2} be two finite signed measures on X. Show that there exists a finite signed measure $\nu_{1} \vee \nu_{2}$ such that $\nu_{1} \vee \nu_{2}(A) \geqslant \nu_{1}(A) \vee \nu_{2}(A)$, and for any other finite signed measure ν such that $\nu(A) \geqslant \nu_{1}(A) \vee \nu_{2}(A)$ we ust have $\nu_{1} \vee \nu_{2} \leqslant \nu$.
(b) If ν_{1}, ν_{2} above are absolutely continuous with respect to a positive σ-finite measure μ, prove $\nu_{1} \vee \nu_{2} \ll \mu$ and express $\frac{d\left(\nu_{1} \vee \nu_{2}\right)}{d \mu}$ in terms of $\frac{d \nu_{1}}{d \mu}$ and $\frac{d \nu_{2}}{d \mu}$.
3. Let (Ω, \mathcal{F}, P) be a measure space with $P(\Omega)=1$, and $X \in L^{1}(\Omega, \mathcal{F}, P)$. [The probabilistic interpretation is that Ω is the sample space, $A \in \mathcal{F}$ is an event, X is a random variable, and $P(X \in B)$ is the chance that $X \in B$, where $B \in \mathcal{B}(\mathbb{R})$.]
(a) Suppose $\mathcal{G} \subseteq \mathcal{F}$ is a σ-sub-algebra of F. Show that there exists a unique \mathcal{G}-measurable function Y such that $\int_{A} Y d P=\int_{A} X d P$ for all $A \in \mathcal{G} .[Y$ is called the conditional expection of X given \mathcal{G}, and denoted by $E(X \mid \mathcal{G})$.]
(b) (Tower property) If $\mathcal{H} \subseteq \mathcal{G}$ is a σ-sub-algebra, show that $E(X \mid \mathcal{H})=$ $E(E(X \mid \mathcal{G}) \mid \mathcal{H})$ almost everywhere.
(c) (Conditional Jensen) If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is convex, show that $\varphi(E(X \mid \mathcal{G})) \leqslant$ $E(\varphi(X) \mid G)$ almost everywhere.
(d) Suppose $X \in L^{2}(\Omega, \mathcal{F}, P)$. Show that $E(X \mid \mathcal{G})$ is the L^{2}-orthogonal projection of X onto the subspace $L^{2}(\Omega, \mathcal{G})$. [Namely show $E(X \mid \mathcal{G}) \in L^{2}(\Omega, \mathcal{G})$, and $\int_{\Omega}(X-E(X \mid G)) Y d P=0$ for all $\left.Y \in L^{2}(\Omega, \mathcal{G}).\right]$
4. Let μ be a positive measure and ν a finite signed measure. Let $\nu=\nu_{\mathrm{ac}}+\nu_{\mathrm{s}}$ be the Lebesgue decomposition of ν. Show that $\|\nu\|=\left\|\nu_{\mathrm{ac}}\right\|+\left\|\nu_{\mathrm{s}}\right\|$.
5. Let μ be σ-finite, and define $\varphi: L^{\infty} \rightarrow\left(L^{1}\right)^{*}$ by $\varphi_{g}(f)=\int_{X} f g d \mu$. Show that φ is a bijective linear isometry. [In this sense we say L^{∞} is the dual of L^{1}. The reverse identification is not true in general: L^{1} can be identified with an subspace of $\left(L^{\infty}\right)^{*}$, but need not be all of it. The proof of this requires the Hanh-Banach theorem.]

Optional problems, and details in class I left for you to check.

* Show that the Radon Nicodym theorem is not true if ν is σ-finite, but μ is not. Where does the proof we had in class break down if μ is not σ-finite?
* Finish the proof of the Lebesgue decomposition (existence and uniqueness) when ν is σ-finite.
* If X, Y are Banach spaces show that $B(X, Y)$ with operator norm is a Banach space.
* Let $p \in(1, \infty], 1 / p+1 / q=1$, and $c<\infty$. If g is a measurable function such that $\sup \left\{\int_{X} s g \mid s\right.$ is simple, and $\left.\|s\|_{p} \leqslant 1\right\} \leqslant c$, show that $g \in L^{q}$ and $\|g\|_{q} \leqslant c$.
* If μ is a finite signed measure, show that $\left|\int f d \mu\right| \leqslant \int|f| d|\mu|$.

Assignment 10: Assigned Wed 11/07. Due Wed 11/14

1. (a) Suppose $\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty}\left|a_{m, n}\right|\right)<\infty$. Show that $\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} a_{m, n}\right)=$ $\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} a_{m, n}\right)$.
(b) Give a counter example to (a) if we only assume $\sum_{m} \sum_{n} a_{m, n}<\infty$. Find a counter example where both iterated sums are finite.
2. (a) If X and Y are not σ-finite, show that Fubini's theorem need not hold.
(b) If $\int_{X \times Y} f d(\mu \times \nu)$ is not assumed to exist (in the extended sense), show that both iterated integrals can exist, be finite, but need not be equal.
3. (Fubini for completions.) Suppose (X, Σ, μ) and (Y, τ, ν) are two σ-finite, complete measure spaces. Let $\pi=(\Sigma \otimes \tau)_{\mu \times \nu}$ denote the completion of $\Sigma \otimes \tau$ with respect to $\mu \times \nu$.
(a) Show that $\Sigma \otimes \tau$ need not be $\mu \times \nu$-complete (i.e. $\pi \supsetneq \Sigma \otimes \tau$ in general).
(b) Suppose $f: X \times Y \rightarrow[-\infty, \infty]$ is \mathcal{F}-measurable. Define as usual the slices $\varphi_{f, x}: Y \rightarrow[0, \infty]$ by $\varphi_{f, x}(y)=f(x, y)$, and similarly $\psi_{f, y}(x)=f(x, y)$. Show that for μ-almost all $x \in X, \varphi_{f, x}$ is an τ-measurable, and for ν almost all $y, \psi_{f, y}$ is an Σ-measurable.
(c) Suppose f is integrable on $X \times Y$ in the extended sense. Define $F(x)=$ $\int_{Y} f(x, y) d \nu(y)$ and $G(y)=\int_{X} f(x, y) d \mu(x)$. Show F is defined μ-a.e. and Σ-measurable. Similarly show G is defined ν-a.e., and τ-measurable. Further, show and that $\int_{X} F d \mu=\int_{Y} G d \nu=\int_{X \times Y} f d(\mu \times \nu)$.
4. Let $(X, \Sigma, \mu),(Y, \tau, \nu)$ be two σ-finite measure spaces, $p \in[1, \infty]$, and $f: X \times$ $Y \rightarrow \mathbb{R}$ is $\Sigma \otimes \tau$ measurable. Let $F(x)=\int_{Y} f(x, y) d \nu(y)$, and $\psi_{y, f}$ be the slice of f defined by $\psi_{y, f}(x)=f(x, y)$. Show that $\|F\|_{L^{p}(X)} \leqslant \int_{Y}\left\|\psi_{y, f}\right\|_{L^{p}(X)} d \nu(y)$. [You should verify that when $Y=\{1,2\}$ with the counting measure, the above is exactly Minkowski's triangle inequality.]
5. For $p \in[1, \infty)$ define $\left.\|f\|_{L^{p, \infty}}=\sup \left\{\lambda \mu\{|f|>\lambda\}^{1 / p} \mid \lambda>0\right\}\right\}$, and the weak L^{p} space (denoted by $L^{p, \infty}$) by $L^{p, \infty}=\left\{f \mid\|f\|_{L^{p, \infty}}<\infty\right\}$. [As usual, we use the convention that functions that are equal almost everywhere are identified with each other.]
(a) If $f \in L^{p}$, show $f \in L^{p, \infty}$ and $\|f\|_{L^{p, \infty}} \leqslant\|f\|_{p}$. Is the converse true?
(b) If $f, g \in L^{p, \infty}$, show that $f+g \in L^{p, \infty}$. Show further that $\|f+g\|_{L^{p, \infty}} \leqslant$ $c\left(\|f\|_{L^{p, \infty}}+\|g\|_{L^{p, \infty}}\right)$ for some constant c independent of f, g. [Thus $\|\cdot\|_{L^{p, \infty}}$ is called a quasi-norm, and $L^{p, \infty}$ is called a quasi-Banach space.]
(c) If μ is σ-finite, $1 \leqslant p<q<r<\infty$ and $f \in L^{p, \infty} \cap L^{r, \infty}$ then show $f \in L^{q}$.

Optional problems, and details in class I left for you to check.

* Show that the Lebesgue measure on \mathbb{R}^{m+n} is the product of the Lebesgue measurs on \mathbb{R}^{m} and \mathbb{R}^{n} respectively. [Note, you've previously seen that $\mathcal{L}\left(\mathbb{R}^{m+n}\right) \supsetneq$ $\mathcal{L}\left(\mathbb{R}^{m}\right) \otimes \mathcal{L}\left(\mathbb{R}^{n}\right)$; however $\mathcal{B}\left(\mathbb{R}^{m+n}\right)=\mathcal{B}\left(\mathbb{R}^{m}\right) \otimes \mathcal{B}\left(\mathbb{R}^{n}\right)$.]
* For $E \in \Sigma \otimes \tau$, define $f_{E}(x)=\nu\left(S_{x}(E)\right)$ and $g_{E}(y)=\mu\left(T_{y}(E)\right)$. Show that $f: X \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$ are measurable. [Hint: First assume μ, ν are finite. Let $\Lambda=\left\{E \mid f_{E}, g_{E}\right.$ are measurable $\}$. Show that Λ is a λ-system, and Λ contains all rectangles.]
* Verify that $\mu \times \nu \stackrel{\text { def }}{=} \int_{X} \nu\left(S_{x}(E)\right) d \mu(x)$ is a measure.

Assignment 11: Assigned Wed 11/14. Due Wed 11/21

1. If $\frac{1}{p}+\frac{1}{q}=1, f \in L^{p}, g \in L^{q}$ show that $f * g$ is bounded and continuous. If $p, q<\infty$, show further $f * g(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
2. Define $\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{d}\right)\left|\forall m, \alpha, \sup _{x}\left(1+|x|^{m}\right)\right| D^{\alpha} f(x) \mid<\infty\right\}$. Here $m \in \mathbb{N} \cup\{0\}$, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in(\mathbb{N} \cup\{0\})^{d}$ is a multi-index, and $D^{\alpha} f=$ $\partial_{1}^{\alpha_{1}} \cdots \partial_{d}^{\alpha_{d}} f$. The space \mathcal{S} is called the Schwartz Space.
(a) If $p \in[1, \infty), f \in L^{p}\left(\mathbb{R}^{d}\right), g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, show that $f * g \in C^{\infty}\left(\mathbb{R}^{d}\right)$, and further $D^{\alpha}(f * g)=f *\left(D^{\alpha} g\right)$
(b) Show that \mathcal{S} is dense subset of L^{p} for $p \in[1, \infty)$.
(c) Show that C_{c}^{∞} is a dense subset of L^{p} for $p \in[1, \infty)$.
3. (a) If $f, g \in L_{\mathrm{per}}^{2}([0,1])$, show that $(f * g)^{\wedge}(n)=\hat{f}(n) \hat{g}(n)$. [Here $L_{\mathrm{per}}^{2}([0,1])$ denotes (equivalence classes of) all Lebesgue measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ which have period 1 (i.e. $\tau_{1} f=f$), and $\int_{0}^{1}|f|^{2} d \lambda<\infty$.]
(b) If $f, g \in L^{2}([0,1])$, show that $(f g)^{\wedge}(n)=\hat{f} * \hat{g}(n) \stackrel{\text { def }}{=} \sum_{m \in \mathbb{Z}} \hat{f}(m) \hat{g}(n-m)$.
4. Though I encourage you to check the properties on the Dirichlet and Fejér kernels stated in the optional problems, you may assume them here without proof.
(a) If $f \in C_{\text {per }}[0,1]$, show that $\left(\sigma_{N} f\right) \rightarrow f$ uniformly. [Here $C_{\text {per }}[0,1]=\{f \in$ $\left.C(\mathbb{R}) \mid \tau_{1} f=f\right\}$ denotes all continuous functions with period 1.]
If $f \in C_{\text {per }}[0,1]$, it turns out that the partial sums $S_{N} f$ need not converge to f even pointwise. (In fact, there exist many $f \in C_{\text {per }}([0,1])$ such that $S_{N} f$ is divergent on a dense G_{δ} in $[0,1]$.) If, however, f is a little bit better than continuous, then the Fourier series of f converges to f pointwise.
(b) Let $f \in C_{\text {per }}([0,1])$ and $\alpha>0$. If $\sup _{x, y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty$, then show that $\left(S_{N} f\right) \rightarrow f$ pointwise, as $N \rightarrow \infty$. [In fact, $\left(S_{N} f\right) \rightarrow f$ uniformly.]
5. Let μ be a finite signed Borel measure on $[0,1]$. If $\forall n \in \mathbb{Z} \hat{\mu}(n)=0$, show $\mu=0$.

Optional problems, and details in class I left for you to check.

* If $f \in L^{p}, g \in L^{q}$ with $p, q \in[1, \infty]$ and $1 / p+1 / q \geqslant 1$, show that $f * g=g * f$.
* If $f \in L^{p}, g \in L^{q}, h \in L^{r}$ with $p, q, r \in[1, \infty]$ and $1 / p+1 / q+1 / r \geqslant 2$, show that $(f * g) * h=f *(g * h)$.
* Define the Derichlet kernel by $D_{N}(x)=\sum_{-N}^{N} \exp (2 \pi i n x)$.
(a) Show that $S_{N} f(x)=D_{N} * f(x) \stackrel{\text { def }}{=} \int_{0}^{1} f(y) D_{N}(x-y) d y$. [Recall, $S_{N} f=$ $\sum_{-N}^{N} \hat{f}(n) e_{n}$, where $e_{n}(x)=e^{2 \pi i n x}$, and $\hat{f}(n)=\left\langle f, e_{n}\right\rangle=\int_{0}^{1} f(y) \bar{e}_{n}(y) d y$.]
(b) Show that $D_{N}(x)=\frac{\sin ((2 N+1) \pi x)}{\sin (\pi x)}$. Further show $\lim _{N \rightarrow \infty} \int_{\varepsilon}^{1-\varepsilon}\left|D_{N}\right|=\infty$.
* Define Fejér kernel by $F_{N}=\frac{1}{N} \sum_{0}^{N-1} D_{n}$.
(a) Show that $\sigma_{N} f \stackrel{\text { def }}{=} \frac{1}{N} \sum_{0}^{N-1} S_{n} f=F_{N} * f$.
(b) Show that $F_{N}(x)=\frac{\sin ^{2}(N \pi x)}{N \sin ^{2}(\pi x)}$, and that $\left\{F_{N}\right\}$ is an approximate identity.

Assignment 12: Assigned Wed 11/21. Due Wed 11/28

1. (a) Let $n \in \mathbb{N}$ be even, $\frac{1}{n}+\frac{1}{n^{\prime}}=1$. If $\hat{f} \in \ell^{n^{\prime}}(\mathbb{Z})$, show that $f \in L_{\text {per }}^{n}([0,1])$ and $\|f\|_{L^{n}} \leqslant\|f\|_{\ell^{n^{\prime}}}$. [Hint: Let $n=2 m$. Then $\|f\|_{L^{n}}^{n}=\left\|\left(f^{m}\right)^{\wedge}\right\|_{\ell^{2}}^{2}$.]
(b) Let $s>\frac{1}{2}-\frac{1}{p} \geqslant 0$, and $\frac{1}{p}+\frac{1}{q}=1$. If $f \in H_{\text {per }}^{s}$ show $\hat{f} \in \ell^{q}(\mathbb{Z})$. Further show that the map $f \mapsto \hat{f}$ is continuous from $H_{\text {per }}^{s} \rightarrow \ell^{q}$.
(c) If $n \in \mathbb{N}$ is even, $s>\frac{1}{2}-\frac{1}{n}$ then show that $H_{\text {per }}^{s} \subseteq L^{n}([0,1])$ and that the inclusion map is continuous. [This is one part of the Sobolev embedding theorem.]
2. Let $f \in L^{2}([0,1])$. Show that there exists $u \in C^{\infty}([0,1] \times(0, \infty))$ such that $u(0, t)=u(1, t), \lim _{t \rightarrow 0^{+}}\|u(\cdot, t)-f(\cdot)\|_{2}=0$, and $\partial_{t} u-\partial_{x}^{2} u=0$. [Hint: You may assume the result of the optional problems.]
3. Finish the change of variable proof using the following approach. Recall $U, V \subseteq$ \mathbb{R}^{d} are open connected sets, and $\varphi: U \rightarrow V$ is a C^{1} bijection whose inverse is also C^{1}. Our aim is to show $\lambda(\varphi(A))=\int_{A}|\operatorname{det} \nabla \varphi| d \lambda$ for all $A \subseteq U$ Borel.
Assume first that φ, φ^{-1} are both uniformly C^{1}, and U, V are bounded. In this case we showed in class that $\lambda(\varphi(A)) \leqslant \int_{A}|\operatorname{det} \nabla \varphi| d \lambda$ for all Borel $A \subseteq U$.
(a) If $f: V \rightarrow[0, \infty]$ is Borel, show that $\int_{V} f \leqslant \int_{U} f \circ \varphi|\operatorname{det} \nabla \varphi| d \lambda$.
(b) Show that $\lambda(A)=\int_{A}|\operatorname{det} \nabla \varphi| d \lambda$. [Hint: This follows very quickly previous part.]
(c) Prove the previous subpart without the additional assumptions that φ, φ^{-1} are uniformly C^{1}, and U, V are bounded.

Optional problems, and details in class I left for you to check.

* (a) If $f \in L_{\text {per }}^{1}([0,1])$, show that $2|\hat{f}(n)| \leqslant \int_{0}^{1}\left|f(y)-f\left(y-\frac{1}{2 n}\right)\right| d y$.
(b) Use the previous subpart to give an alternate (perhaps more illuminating) proof of the Riemann Lebesgue lemma.
(c) If $\alpha \in(0,1), f \in C_{\text {per }}^{\alpha}([0,1])$, show that $\sup _{n}|n|^{\alpha}|f(n)|<\infty$.
(d) Show by example that the converse of the previous part is false.
* For any $s \geqslant 0$ show that H_{per}^{s} is a closed subspace of L^{2}.
* Let $0 \leqslant r \leqslant s$. Show that any bounded sequence in $H_{\text {per }}^{s}$ has a subsequence that is convergent subsequence in H_{per}^{r}.
* Let $n \in \mathbb{N} \cup\{0\}, \alpha \in[0,1) s>1 / 2+n+\alpha$. Show that $H_{\mathrm{per}}^{s} \subseteq C_{\mathrm{per}}^{n, \alpha}[0,1]$ and the inclusion map is continuous. [Recall $C_{\mathrm{per}}^{n, \alpha}[0,1]$ is the set of all C^{n} periodic functions on \mathbb{R} (i.e. $\tau_{1} f=f$) whose $n^{\text {th }}$ derivative is Hölder continuous with exponent α.]
$*$ If $\|\nabla \varphi-I\|_{L^{\infty}}<\varepsilon$, and $\varphi(0)=0$, then show that $\varphi\left((-1,1)^{d}\right) \subseteq(-1-d \varepsilon, 1+d \varepsilon)^{d}$.
* (Polar Coordinates.) Let $f \in L^{1}\left(\mathbb{R}^{2}\right)$. Show that

$$
\int_{\mathbb{R}^{2}} f(x, y) d x d y=\int_{[0, \infty) \times[0,2 \pi)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Assignment 13: Assigned Wed 11/28. Due Wed $12 / 05$

1. (a) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and f is not identically 0 (a.e.), then show that $M f \notin L^{1}\left(\mathbb{R}^{d}\right)$. The next few subparts outline a proof that for any $p>1$, the maximal function is an L^{p} bounded sublinear operator. Let $p \in(1, \infty), f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $f \geqslant 0$.
(b) Show that $\lambda\{M f>\alpha\} \leqslant \frac{3^{d}}{(1-\delta) \alpha} \int_{\{f>\delta \alpha\}} f$, for any $t>0, \delta \in(0,1)$ and $f \geqslant 0$ measurable.
(c) Let $p \in(1, \infty]$, and $d \in \mathbb{N}$. Show that there exists a constant $c=c(p, d)$ such that $\|M f\|_{p} \leqslant c\|f\|_{p}$ for all $f \in L^{p}\left(\mathbb{R}^{d}\right)$. [Hint: For $p<\infty$, use the previous part, the identity $\|M f\|_{p}^{p}=\int_{0}^{\infty} p \alpha^{p-1} \lambda\{M f>\alpha\} d \alpha$ and optimise in δ.]
2. Let μ be a finite signed Borel measure on \mathbb{R}^{d}. Define $D \mu(x)=\lim _{r \rightarrow 0^{+}} \frac{\mu(B(x, r))}{\lambda(B(x, r))}$.
(a) If $\mu \perp \lambda$, show that $D \mu=0$ almost everywhere with respect to λ. [Hint: Write $\mu=\mu_{1}+\mu_{2}$ where $\operatorname{supp}\left(\mu_{1}\right)$ is compact with Lebesgue measure 0 , and $\left\|\mu_{2}\right\|<\varepsilon$.]
(b) If $\mu \perp \lambda$, show that $D|\mu|=\infty$ almost everywhere with respect to μ !
(c) Show that $D \mu=\frac{d \mu_{\mathrm{ac}}}{d \lambda}$ almost everywhere with respect to λ. [Here $\mu=\mu_{\mathrm{s}}+\mu_{\mathrm{ac}}$ is the Lebesgue decomposition of μ with respect to λ.]
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a monotone function. Show that f is differentiable almost everywhere. [Hint: Suppose first f is monotone, injective and bounded. Show that $\mu(A)=\lambda(f(A))$ defines a finite Borel measure. How does this help?]
4. If $f, g:[0,1] \rightarrow \mathbb{R}$ are absolutely continuous, then show that $f g$ is absolutely continuous. Conclude $[f g]_{0}^{1}=\int_{0}^{1} f^{\prime} g+\int_{0}^{1} f g^{\prime}$.
5. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipshitz if and only if f is absolutely continuous and $f^{\prime} \in L^{\infty}(\mathbb{R})$.

Optional problems, and details in class I left for you to check.

* Show that the arbitary union of closed (non-degenerate) cells is Lebesgue measurable.
* Find an example of $E \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ and $x \in \mathbb{R}^{d}$ such that $\lim _{r \rightarrow 0} \frac{\lambda(E \cap B(x, r))}{\lambda(B(x, r))}$ does not exist.
* Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable. Let $\alpha, \beta>0$ with $\alpha / \beta \notin \mathbb{Q}$. If f has period α, and also has period β (i.e. for all $x \in \mathbb{R}, f(x)=f(x+\alpha)=f(x+\beta))$, then show that f is constant almost everywhere. (But f need not be constant everywhere!)
* We say the family $\left\{E_{r}\right\}$ shrinks nicely to $x \in \mathbb{R}^{d}$ if there exists $\delta>0$ such that for all $r, E_{r} \subseteq B(x, r)$ and $\lambda\left(E_{r}\right)>\delta \lambda(B(x, r))$. If $\left\{E_{r}\right\}$ shrinks nicely to x, show that $\lim \frac{1}{\lambda\left(E_{r}\right)} \int_{E_{r}} f=f(x)$ for all Lebesgue points of f.
* If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, show that $M f(x) \geqslant|f(x)|$ at all Lebesgue points of f.
* If $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous, then show that f is of bounded variation, and that the variation is absolutely continuous. Conclude f can be written as the difference of two monotone absolutely continuous functions.

