
Assignment 14: Assigned Wed 12/05. Due never

1. (a) If
∫
Rd(1 + |x|)|f(x)| dx < ∞, show that f̂ is differentiable and ∂j f̂(ξ) =

−2πi(xjf(x))
∧

(ξ). [Note: (xjf(x))
∧

(ξ) means ĝ(ξ), where g(x) = xjf(x).]

(b) If f ∈ C1
0 (Rd), and ∇f ∈ L1 show that (∂jf)

∧
(ξ) = +2πiξj f̂(ξ).

(c) Show that the mapping f 7→ f̂ is a bijection in the Schwartz space.

2. If µ is a finite Borel measure on Rd define µ̂(ξ) =
∫
e−2πi〈x,ξ〉 dµ(x). If µ̂(ξ) = 0

for all ξ, show that µ = 0. [Hint: Show that
∫
f dµ = 0 for all f ∈ S.]

3. For f ∈ L1, the formula f̂(ξ) =
∫
f(x)e−2πi〈x,ξ〉 allows us to prove many

identities: E.g. (δλf)∧(ξ) = f̂(λξ), etc. For f ∈ L2, the formula f̂(ξ) =∫
f(x)e−2πi〈x,ξ〉 is no longer valid, as the integral is not defined (in the Lebesgue

sense). However, most identites remain valid, and can be proved using an ap-
proximation argument. I list a couple here.

(a) For f ∈ L1 we know (τxf)∧(ξ) = e−2πi〈x,ξ〉f̂(ξ). Prove it for f ∈ L2.

(b) Similarly, show that (δλf)∧(ξ) = f̂(λξ) for all f ∈ L2.

(c) Let F denote the Fourier transform operator (i.e. Ff = f̂), and R denote
the reflection operator (i.e. Rf(x) = f(−x)). Note that our Fourier inver-

sion formula (for f ∈ L1, f̂ ∈ L1) is exactly equivalent to saying F 2f = Rf .
Prove F 2f = Rf for all f ∈ L2.

4. (Uncertainty principle) Suppose f ∈ S(R). Show that(∫
R
|xf(x)|2 dx

)(∫
R
|ξf̂(ξ)|2 dξ

)
>

1

16π2
‖f‖2L2‖f̂‖2L2

[This illustrates a nice localisation principle about the Fourier transform. The first integral

measures the spread of the function f . The second the spread of the Fourier transform f̂ . Here
you show that this product is bounded below! Thus, if one is locallized the other is forced to
be spread out.

In quantum mechanics, Haysenberg’s uncertainty principle says the product of errors in mea-
suring the position and momentum (respectively) of a particle is bounded below. The proof,
once you know enough Physics, reduces to the above inequality.

Hint: Consider
∫
R xf(x)f ′(x) dx. ]

5. (Central limit theorem) Let f ∈ L1(R) be such that f > 0 and
∫
x2f(x) dx <∞.

Define gn = (f ∗· · ·∗f) (n-times), and hn(x) = δ1/
√
ngn(x) =

√
ngn(

√
nx). Show

ĥn(ξ)
n→∞−−−−→ exp

(
−2πiµξ − 2π2iσ2ξ2

)
,

where µ =
∫
xf(x) dx and σ2 =

∫
(x − µ)2f(x) dx. [The central limit theorem says

that tabulating results of a large number of independent trials of any experiment produces a

“bell curve”. The key step in the proof, which you will no doubt see next semester, is showing

that any function convoved with itself often enough looks like a Gaussian.]

6. (Sobolev spaces) For f ∈ L2(Rd) and s > 0 define

‖f‖2Hs =

∫
(1 + |ξ|s)2|f̂(ξ)|2 dξ, and Hs = {f ∈ L2

∣∣ ‖f‖Hs <∞}.

Intuitively, we think of Hs as the space of functions with “s” “weak-derivatives”
in L2. (This will be formalized in your functional analysis course.)

(a) If f ∈ Cn0 (Rd) and Dαf ∈ L2 for all |α| < n, then show that f ∈ Hn(Rd).
(b) For s ∈ (0, 1] show that there exists a constant c such that for all x ∈ Rd,

and f ∈ Hs we have ‖f − τxf‖L2 6 c|x|s‖f‖Hs .
7. (Sobolev embedding) If n ∈ N and f ∈ Hs(Rd) for s > n + d

2 then show that
f ∈ Cn, and further the inclusion map Hs → Cn is continuous.

8. (a) (Elliptic regularity) Let Lu =
∑
aij∂i∂ju+

∑
bi∂iu+cu, where aij , bi, c are

constants. Suppose ∃λ > 0 such that aij = aji and |
∑
aijξiξj | > λ|ξ|2 for

all ξ ∈ Rn (this assumption is called ellipticity). If f ∈ C∞, Dαf ∈ L1 for
all α, and u, ∂iu, ∂i∂ju ∈ L1∩C0 are such that Lu = f , show that u ∈ C∞.
[To emphasize why this is surprising, choose for example L = 4. Then 4u = f makes

no mention of a mixed derivative ∂1∂2u. Yet, all such mixed derivatives exist and are

smooth. Hint: If f ∈ Hs show that u ∈ Hs+2.]

(b) Show by example that the previous subpart is false without the ellipticity
assumption.

9. (Trace theorems) Let p ∈ Rm be fixed. Given f : Rm+n → R define Spf : Rn →
R by Spf(y) = f(p, y).

(a) Let s > m/2, and s′ = s −m/2. Show that there exists a constant c such
that ‖Spf‖Hs′ (Rn) 6 c‖f‖Hs(Rm+n).

(b) Show that the section operator Sp extends to a continuous linear opera-

tor from Hs(Rm+n) to Hs′(Rn). [Given an arbitrary L2 function on Rm+n it is

of course impossible to restrict it to an m-dimensional hyper-plane. However, if your

function has more than n/2 “Sobolev derivatives”, then you can make sense of this

restriction, and the restriction still has s− n/2 “Sobolev derivatives”.]

10. (Reliech Lemma) Let K ⊆ Rd be compact, 0 6 s1 < s2, and suppose {fn} are a
sequence of functions supported in K. If the sequence {fn} is bounded in Hs2 ,
then show that it has a convergent subsequence in Hs1 . [This is the generalization

of the Arzella-Ascolli theorem in this context.]
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