
Math 372: PDE Homework.

The problem numbers refer to problems from your text book (second edition). I will
often assign problems which are not in the text book. Keep in mind that there is a
firm ‘no late homework’ policy.

Assignment 1: Assigned Wed 01/16. Due Wed 01/23

1. Sec. 1.1. 3, 4

2. Sec. 1.2. 2, 3, 11, 12 [You don’t need the ‘coordinate method’ to do 11, as the hint

suggests. It can be done directly using the method of characteristics.]

3. Find the general solutions of the PDEs

(a) (1 + x2)∂xu+ ∂yu = yu2. (b) (1−xy)∂xu+∂yu+∂zu = (y−z)u.

4. (Optional, harder) Given that temperature in a conductor obeys the equation
∂tu − 4u = 0, formulate a rigorous version of the statement “heat does not
collect at hot points.” Prove it!

Assignment 2: Assigned Wed 01/23. Due Wed 01/30

1. Sec. 1.3. 1, 2, 10, 11

2. A fluid is called incompressible if for any region R the rate at which the fluid
enters and leaves the region is 0. If an incompressible the fluid has a constant
density, show that its velocity field must be divergence free. [Once you figure out

how to translate the above into mathematical symbols, the solution will be evident.]

3. Newtons law of cooling says that a body loses heat to it’s surroundings at a rate
proportional to the temperature difference. Consider a thin (1D) wire immersed
in a medium of constant temperature θ0, which exchanges heat with the sur-
roundings according to Newtons law. Find a PDE satisfied by the temperature
in the wire.

4. Let D ⊆ R3 be the region occupied by a fluid body (e.g. a lake), u(x, t) be the
instantaneous velocity of the fluid at point x ∈ D and time t, and ρ(x, t) be
the concentration of some pollutant at time t and position x ∈ R3. Fick’s law
says that the rate of flow of the pollutant is proportional to the concentration
gradient. Use this to derive a PDE for ρ. [This is called the advection diffusion

equation.]

5. For this problem, identify (x, y) ∈ R2 with the complex number x + iy ∈ C. A

function f : C→ C is said to be holomorphic if for every z ∈ C, lim
ζ→0

f(z+ζ)−f(z)
ζ

exists. Note: The limit is taken as ζ ∈ C approaches 0.

(a) If f is holomorphic, show that ∂xf = −i∂yf . Conclude ∂xu = ∂yv and
∂yu = −∂xv, where u = Re f and v = im f .

(b) If f is holomorphic, let f ′ = lim
ζ→0

f(z+ζ)−f(z)
ζ denote the “complex” deriva-

tive of f . Amazingly, if f is holomorphic, then f ′ is also holomorphic! (In
contrast, if f is only differentiable, f ′ need not even be continuous, let alone

differentiable.) Assuming f and f ′ are holomorphic, show that u
def
= Re f

is harmonic (i.e. show 4u = 0).

6. (Optional, slightly harder) Given that the profile of a string obeys the wave
equation ∂2t u− c2∂2xu = 0, make rigorous and prove the statement: “The speed
of propagation is c.”

7. (Optional, HARD) This is a follow up to last times optional question. Many
of you translated the statement “Heat does not collect at hot points” into the
statement that the temperature at a strict local maximum must decrease with
time. Question: What can you say about the global maximum of temperature?
Keep in mind that a global maximum need not be a strict local maximum.

8. (Optional, CHALLENGE) Harmonic functions have many beautiful properties.
One surprising one is the mean value property: If u : Rd → R is such that
4u = 0, then u(0) = 1

area(∂BR)

∫
BR

u dS, where BR is the ball with center 0 and

radius R. [This holds in all dimensions. It is easy to prove in one dimension. If you know

some complex analysis, you can deduce this quickly from the Cauchy integral formula in 2

dimensions. It is a CLEVER application of the divergence theorem in higher dimensions. (I

will do this in class when I study harmonic functions.)]



Assignment 3: Assigned Wed 01/30. Due Wed 02/06

1. Sec. 1.4. 3, 4, 6

2. Sec. 2.1. 5, 10.

3. (a) Suppose u satisfies utt − c2uxx = 0 on the interval (a, b), for t > 0. Under
what boundary conditions on u is energy is conserved? Prove it, and provide
some physical explanation.

(b) Let D be some region in (2 or 3) dimensional space. Suppose u satisfies
utt − c24u = 0 in the region D. Define the energy to be the area/volume

integral E =
∫
D

(u2t + c2|∇u|2) dv. Under what boundary conditions on u is
energy conserved? Prove it. [Hint: From the previous part you should be able to

guess the boundary conditions. For the proof, it requires replacing ‘integration by parts’

from your previous proof by a clever application of the divergence theorem.]

4. Let D be a region in R3, and c, r > 0 be constants, and a, f be functions
depending only on the spatial variables x1, x2 and x3 such that a(x) > 0 for all
x ∈ D. Show that solutions to the PDE

∂2t u− c24u+ au+ r∂tu = f

with Dirichlet boundary conditions u = 0 on ∂D, and initial data

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x)

are unique. That is, if u1 and u2 are two solutions to the above PDE, with
the same boundary conditions and initial data, show that they are equal. [Hint:

Suppose u1 and u2 are two solutions. Set v = u1 − u2. Now try and cook up some ‘energy’

which will help you show v is 0. Note, the energy you cook up (if you do it right) won’t be

conserved! It will however decrease with time.]

5. Solitary waves (or solitons) are waves that travel great distances without chang-
ing shape. Tsunami’s are one example. Scientific study began with Scott Russell
in 1834, who followed such a wave in a channel on horseback, and was fascinated
by it’s rapid pace and unchanging shape. In 1895, Kortweg and De Vries showed
that the evolution of the profile is governed by the equation

∂tu+ 6u∂xu+ ∂3xu = 0.

For this question, suppose u is a solution to the above equation for x ∈ R, t > 0.
Suppose further that u and all derivatives (including higher order derivatives)
of u decay to 0 as x→ ±∞.

(a) Let p =
∫∞
−∞ u(x, t) dx. Show that p is constant in time. [Physically, p is the

momentum of the wave.]

(b) Let E =
∫∞
−∞ u(x, t)2 dx. Show that E is constant in time. [Physically, E is

the energy of the wave.]

(c) It turns out that the KdV equation has infinitely many conserved quanti-
ties. The energy and momentum above are the only two which have any
physical meaning. Can you find a non-trivial conserved quantity that’s not
a linear combination of p and E?

Assignment 4: Assigned Wed 02/06. Due Wed 02/13

1. Sec. 2.3. 3, 5, 7.

2. Suppose u satisfies the wave equation ∂2t u − ∂2xu = 0 for x ∈ R, t > 0. Let
x ∈ R, t > 0, and a, b ∈ (0, t). True or false:

u(x− a, t− b) + u(x+ a, t+ b) = u(x− b, t− a) + u(x+ b, t+ a)?

If true, prove it. If false, find a counter example.

3. Let L, T > 0, and a, b be two continuous functions such that a(x, t) > 0 (with
no sign assumption on b).

(a) If u is continuous on the closed rectangle [0, L]× [0, T ] and satisfies ∂tu−
a∂2xu + b∂xu < 0 on the open rectangle (0, L) × (0, T ), then show that u
attains it’s maximum only on the sides or bottom of this rectangle.

(b) If instead ∂tu − a∂2xu + b∂xu 6 0. Show that u attains it’s maximum on
the sides or bottom of the above rectangle.

(c) Show that solutions to the PDE ∂tu − a∂2xu + b∂xu = f , with initial data
u(x, 0) = ϕ(x), and Dirichlet boundary conditions u(0, t) = g1(t) and
u(L, t) = g2(t) are unique. [If a is not constant in x, then you won’t (easily)

be able to prove uniqueness to this PDE using energy methods.]

4. Let a, b, L, T be as in the previous problem, and u is continuous on the rectangle
R̄ = [0, L]× [0, T ].

(a) Suppose c is a function such that c(x, t) > 0 for all x ∈ (0, L) and t ∈ (0, T )
and ∂tu − a∂2xu + b∂xu + cu 6 0. Show that if u attains a non-negative
maximum, then it must be on the sides or bottom of the rectangle R̄.

(b) In the previous part, show by example that a negative maximum of u can
be attained in the interior (or top) of R̄.

(c) Instead of assuming c(x, t) > 0, suppose we assume c(x, t) > −M for some
constant M . Then if u 6 0 on the sides and bottom of R̄, must u 6 0 on
all of R? Prove or find a counter example.

5. Let u satisfy the equation ∂tu − ∂2xu = u(1 − u) on the space-time rectangle
R = (0, L) × (0, T ), and is continuous on R̄. If 0 6 u 6 1 on the sides and
bottom of R, must 0 6 u 6 1 on all of R? Prove it. [A standard fact in analysis

will guarantee −M 6 u 6 M for some big number M . Feel free to assume this if you haven’t

seen it before. Physically, this is the reaction diffusion equation used to describe evolution of

temperature in an exothermic reaction (e.g. burning fuel).]

6. (Optional, challenge.) If ∂tu − κ∂2xu 6 0 in the space time rectangle R =
(0, L) × (0, T ). If u attains an interior maximum at a point (x0, t0) show that
u must be constant up to time t0. [This is the Strong Maximum Principle, and has

an elementary (but TRICKY) proof using only the weak maximum principle. I will offer a

reward for a correct solution.]



Assignment 5: Assigned Wed 02/13. Due Fri 02/22

1. Solve ut − 1
2uxx = 0 on the line, with initial data u(x, 0) = |x|. Sketch profiles

of u for t = 1
2 , t = 1, t = 10. [This problem will show you how the corners of the initial

data get smoothed out.]

2. For x = (x1, . . . , xn) ∈ Rn, define G(x, t) = (2πt)−n/2e−|x|
2/2t.

(a) Show that ∂tG = 1
24G for any t > 0.

(b) Show that
∫
Rn G(x, t) dx = 1 for any t > 0. [By

∫
Rn G(x, t) dx, I mean the

iterated integral
∫∞
−∞ . . .

∫∞
−∞G(x1, . . . , xn, t) dx1 · · · dxn.]

(c) Write down a formula for a solution to the heat equation ∂tu − 1
24u = 0,

for x ∈ Rn, t > 0 with initial data u(x, 0) = f(x). Verify your formula
solves the equation for t > 0. (Verifying that it has the correct initial data
is harder, and will be handled later on.)

3. (a) Compute the solution of ∂tu− 1
2∂

2
xxu = f given u(x, 0) = 0, and f(x, t) = 1

if |x| 6 1, and f(x, t) = 0 otherwise.

(b) If α > 0 and |x| > 1, compute lim
t→∞

1
tαu(x, t).

Assignment 6: Assigned Fri 02/22. Due Wed 02/27

1. Let f be a function, and suppose u(x, t) =
∫∞
−∞ f(y)G(x− y, t) dy.

(a) If f is bounded and limx→±∞ f(x) = 0, show that for every t > 0 we also
have limx→±∞ u(x, t) = 0.

(b) If instead
∫∞
−∞|f | <∞, must we still have limx→±∞ u(x, t) = 0? Prove it.

2. Let f be a bounded function, and u(x, t) =
∫∞
−∞ f(y)G(x− y, t) dy.

(a) Show that lim
t→0+

u(x, t) = 1
2 (f(x+) + f(x−)), where f(x±) = lim

y→x±
f(y).

(b) (Unrelated) If f is differentiable, f ′ is bounded and f ′ is continuous at x,
show that lim

t→0+
∂xu(x, t) = f ′(x).

3. Suppose we want to solve ∂tu−κ∂2xu = 0 for x ∈ (0,∞), t > 0 with u(x, 0) = f(x)
and Dirichlet boundary conditions u(0, t) = 0. Here’s a trick:

(a) Let g(x) = f(x) for x > 0, and g(x) = −f(−x) for x < 0 (this is called the
odd extension of f). Let v be the solution of ∂tv − κ∂2xv = 0 for x ∈ R,
t > 0 with initial data v(x, 0) = g(x). Show that v(0, t) = 0 for all t > 0.
[You may, but need not, use the explicit solution formula. You may assume all functions

decay at infinity.]

(b) Use the explicit formula for v from the previous subpart to show that
u(x, t) =

∫∞
0
f(y)[G(x− y, 2κt)−G(x+ y, 2κt)] dy is the desired solution.

(c) Find an explicit formula for the solution of the PDE ∂tu− κ∂2xu = g(x, t),
for x > 0, t > 0, with Dirichlet boundary conditions u(0, t) = 0 and initial
data u(x, 0) = f(x). [You may assume decay as x→ +∞.]

4. (a) Use the same trick we used for the heat equation to find an explicit formula
for the solution of the PDE ∂2t u − c2∂2xu = 0, for x > 0, t > 0, with
Dirichlet boundary conditions u(0, t) = 0 and initial data u(x, 0) = ϕ(x),
and ∂tu(x, 0) = ψ(x).

(b) For the previous subpart, sketch the domain of dependence of a point (x, t).
[Do two cases: x < ct and x > ct. Your pictures will be different!]

(c) Appropriately modify the previous trick to find an explicit formula for the
solution of the PDE ∂2t u− c2∂2xu = g(x, t), for x > 0, t > 0, with Neumann
boundary conditions ∂xu(0, t) = 0 and initial data u(x, 0) = ϕ(x), and
∂tu(x, 0) = ψ(x).

Assignment 7: Assigned Wed 02/27. Due Wed 03/06

1. Sec. 4.1. 3, 4, 6.

2. Sec. 4.2. 2, 4.

If you can do both the problems below PERFECTLY, then you don’t have to turn
in the book problems for this assignment.

3. This problem outlines a proof of the strong Minimum principle. Suppose ∂tu−
κ∂2xu = 0 in the domain R = (a, b) × (0, T ), and u is continuous up to the
boundary of R. Suppose that the minimum of u on the rectangle R is 0 and is
attained at some point (x0, t0) in the interior of R.

(a) Show that u(x0, s) = 0 for all s 6 t0. [Hint: Q#3 on your exam helps (a lot).]

(b) Show that u(y, t0) = 0 for all y ∈ [a, b].

(c) Conclude u(x, s) = 0 for all x ∈ [a, b] and s 6 t0.

4. Suppose λ ∈ R and X is a function such that X(0) = X(L) = 0, X ′′ = −λX and
X(x) > 0 for all x ∈ (0, L). Show that for any f ∈ C2 such that f(0) = f(L) = 0
we must have

λ 6

∫ L
0

(f ′)2∫ L
0
f2

.



Assignment 8: Assigned Wed 03/06. Due Wed 03/20

1. Sec. 5.1. 2, 5

2. This problem extends the symmetry and orthogonality lemmas to higher dimen-
sions. Let D be a bounded region in R3 (or in R2).

(a) Let u, v be two functions. Show that
∫
D
u4v =

∫
∂D

u ∂v∂n̂ −
∫
D

(∇u) · (∇v).
[Recall, by

∫
D f , I mean the volume integral

∫∫∫
D f(x, y, z) dV . Similarly by

∫
∂D f , I

mean the surface integral
∫∫
D f(x, y, z) dS.]

(b) (Positivity) Suppose −4u = λu in D, with the Dirichlet boundary condi-

tion u = 0 on the boundary of D. Show that λ =
(∫
D
|∇u|2

)
/
(∫
D
u2
)
, and

hence λ > 0.

(c) (Symmetry) Suppose u and v satisfy the Dirichlet boundary conditions
u = v = 0 on the boundary of D. Show that

∫
D

(−4u)v =
∫
D
u(−4v).

(d) (Orthogonality) Suppose −4u = λu, −4v = µv, λ 6= µ, and u, v satisfy
the Dirichlet boundary conditions u = v = 0 on the boundary of D. Show
that

∫
D
uv = 0.

(e) Do the previous subparts work if we replace the Dirichlet boundary condi-
tions with Neumann? Explain.

3. If f is a real valued function, and cn be the nth complex Fourier coefficient of
f . Show that c−n = cn.

4. A file on the website contains a mix of two audio clips: One of birds chirping,
and the other of a flute. Your task is to remove the chirping birds, and recover
(as well as you can) the original clip of the flute alone.

You should email your final code prakjitj@andrew.cmu.edu, along with in-
structions on how to run it; when given the WAV file as input, it should produce
a WAV file as output. To measure the error, we will convert your wave file to a
vector, and normalise it to have length 1. The original wave file for the flute will
also be converted it to a vector (again normalised to have length 1). The error
will be half the distance between the above two normalised vectors. [The distance

(as measured above) between the mixed clip and the original flute sample is about 0.1362.

My code currently reduces this distance to 0.0045, at which point the birds are essentially

inaudible, with very little “artifacting”. See if you can do better! ]

Assignment 9: Assigned Wed 03/20. Due Wed 03/27

1. Sec. 5.4. 1, 7, 13

2. Find a sequence of functions (fn) such that
∫∞
−∞|fn(x)|2 dx < ∞, (fn) → 0

uniformly on (−∞,∞), however (fn) does not converge to 0 in L2(−∞,∞).
Why does this not contradict the result from class?

3. Suppose f is a piecewise differentiable 2L-periodic (complex valued) function.
Let cn be the (Complex) Fourier coefficients of f , and dn be the (complex)
Fourier coefficients of f ′.

(a) Assuming that the Fourier series of f and f ′ converge, and that the Fourier
series of f can be differentiated term by term, guess a relation between the
cn’s, and dn’s.

(b) Prove your relation above without assuming term by term differentiation
of the Fourier series, or convergence of the above Fourier series. [You may

assume that f ′ is continuous.]

(c) As I mentioned in class, differentiability of a function usually translates to
faster decay of it’s Fourier coefficients. Here’s one example: Usually if one
only knew

∫
−LL|f |2 <∞, then we only know (by Bessel’s inequality) that∑∞

−∞|cn|
2
<∞. If additionally

∫ L
−L|f

′|2 <∞, show that
∑∞
−∞|ncn|

2
<∞

(d) If
∫ L
−L|f |

2
< ∞ and

∫ L
−L|f

′|2 show that |cn| 6 k
n for some constant k,

independent of n. [Warning: f need not be bounded! You may, however, assume the

relation between cn and dn you derived in the previous parts holds.]

Assignment 10: Assigned Wed 03/27. Due Wed 04/03

1. Let f be a complex valued 2L-periodic function, and cn = 1
2L

∫ L
−L f(x)e−i

nπ
L x dx

be the nth Complex Fourier coefficient of f . Let SNf =
∑N
−N cnfn be the partial

sums and σNf = 1
N

∑N−1
0 SNf .

(a) Show that σNf(x) =
∫ L
−LKN (x−y)f(y) dy, where KN (z) =

sin
(
N
2
π
Lx
)2

2NL sin
(

1
2
π
Lx
)2 .

(b) Show that there exists a constant C > 0 such that for all N, x, we have
KN (x) 6 C

N min{N2, 1
x2 }.

(c) For all N , show that KN > 0, and
∫ L
−LKN (x) dx = 1.

(d) For any ε > 0, show that limN→∞
(∫ −ε
−LKN (x) dx+

∫ L
ε
KN (x) dx

)
= 0.

(e) If f is bounded and continuous at the point x ∈ [−L,L], then show that
lim
N→∞

σNf(x) = f(x). [If you know uniform continuity, this proof will also show σNf

will converge to f uniformly.]

2. Let f be a continuous function on [0, L], and An be the Fourier Sine coefficients
of f . The Sobolev embedding theorem says that if for some k ∈ N and s > 1

2 we

have
∑
|nk+sAn|2 <∞, then f is k-times differentiable, and its k-th derivative

is continuous. [As I’ve said in class, better differentiability of the function translates to

faster decay of the Fourier coefficients. This is a theorem illustrating this principle.]

(a) (Optional) Prove the above version of the Sobolev embedding theorem.
[Hint: For k = 1, use the Cauchy-Schwarz inequality to show that

∑
|nAn| <∞. If you

don’t know the “usual” theorems guaranteeing differentiability of limits, you’ll have to

resort to the Weierstrass M -test and the Mean value theorem.]

(b) (Not optional) Suppose u satisfies the heat equation on [0, L] with Dirichlet
boundary conditions u(0, t) = u(L, t) = 0 and initial data u(x, 0) = f(x).
Show that for any t > 0 the function u is infinitely differentiable as a
function of x.

(c) Explain why your proof above won’t work for the wave equation.



Assignment 11: Assigned Wed 04/03. Due Wed 04/10

1. (a) Suppose
∫ L
−L|g| <∞. Show limN→∞

∫ L
−L sin((N + 1

2 )πxL )g(x) dx = 0.

Let x ∈ (−L,L), α ∈ (0, 1]. We say a function f is Hölder continuous at x with
exponent α if there exists a constant C > 0 such that |f(y)− f(x)| 6 C|y−x|α.
The next two problems show that Hölder continuity implies continuity, but not
conversely.

(b) (Optional.) If for some α ∈ (0, 1] the function f is Hölder continuous at x,
then f is continuous at x.

(c) Find a function f such that f is continuous at 0, however for EVERY
α ∈ (0, 1] the function f is NOT Hölder continuous at 0 with exponent α.

(d) Let x ∈ (−L,L) and α ∈ (0, 1]. Suppose f is a function such that
∫ L
−L|f | <

∞, and f is Hölder continuous at x with exponent α. Define the function
h by

h(y) =
f(y)− f(x)

sin(π(x−y)2L )

Show that
∫ L
−L|h| <∞.

(e) Let x, f, α be as in the previous part. Show that the complex Fourier series
of f converges to f(x) at the point x.

(f) Let f and x ∈ (−L,L) be such that
∫ L
−L|f | < ∞ and both the left and

right derivatives of f exist and are finite (but are not necessarily equal) at
x. Show that the Fourier series of f converges to f(x) at the point x.

2. Suppose u satisfies the heat equation ∂tu − ∂2xu = 0 for x ∈ (0, L) and t > 0
with Neumann boundary conditions ∂xu(0, t) = ∂xu(L, t) = 0 and initial data
u(x, 0) = f(x). You may assume ‖f‖ <∞.

Consider now the limit of the functions u(·, t) as t→∞. Namely, for any fixed
t > 0, view the slice of u at time t as a function of x. Then consider the limit of
these functions as t→∞. Does this limit exist in the pointwise, uniform or L2

sense? Prove it. Also compute the limit.

3. Let Ω ⊆ R3 be a bounded domain. Let f and g be two given functions. Show
that the solution to the Poisson equation −4u = f for x ∈ Ω, with Dirichlet
boundary conditions u = g for x ∈ ∂Ω is unique.

4. (Optional) Verify the following identities in polar coordinates:

(a) ∂xr x̂+ ∂yr ŷ = r̂

(b) ∂xθ x̂+ ∂yθ ŷ = 1
r θ̂

(c) ∇ · r̂ = 1
r .

(d) ∇ · θ̂ = 0.

Assignment 12: Assigned Wed 04/10. Due Wed 04/17

1. Sec. 6.1. 6, 9.

2. Let P (r, θ) be the Poisson kernel on a disk of radius a. For any ε > 0, show that

lim
r→a−

[∫ −ε
−π P (r, θ) dθ +

∫ π
ε
P (r, θ)

]
= 0.

3. Let D be a disk of radius a, and u be the solution of −4u = 0 in D, with
boundary condition u(a, θ) = f(θ). Suppose

∫ π
−π|f(θ)|2 dθ < ∞. Let cn(r) =

1
2π

∫ π
−π u(r, θ)e−inπθ dθ be the complex Fourier coefficients of u(r, ·).

(a) For any s > 0 and r < a, show that
∑∞
−∞|nscn(r)| < ∞. [As before, you

know cn(r) explicitly in terms of cn(a).]

(b) Show that for any r < a, u is infinitely differentiable.

(c) Show that lim
r→a−

∫ π
−π|u(r, θ) − f(θ)|2 dθ = 0. [This is one situation where the

theorem allowing you to interchange the limit and integral does not apply. You’ll have

to do this out explicitly. Hint – Fourier series . . . , but perhaps you guessed that already.]

4. (Separation of variables on an annulus) Given a, b ∈ R such that 0 < a < b,
let the annulus A be defined by A = {x ∈ R2 | a < |x| < b}. Given two
periodic functions f , g, find a function u such that 4u = 0 in A, with boundary
conditions u(a, θ) = f(θ) and u(b, θ) = g(θ). You may leave your answer as an
infinite series involving the appropriate Fourier coefficients of f and g.

5. (Optional challenge that will earn you a reward.) Suppose 4u = 0 in Ω and u
attains it’s maximum at some point y ∈ ∂Ω. If u is non-constant, then show
that n · ∇u(y) > 0, where n is the outward pointing unit normal at y.


