Kolmogorov Forward Equation.

We derived the Kolmogorov backward equation in class. This short note deduces the Kolmogorov forward equation from the Kolmogorov backward equation. Let X be a diffusion satisfying the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

where b and σ are time independent and Lipshitz. Suppose further X has a (smooth) transition density

$$
p(x, s ; y, t)=P\left(X_{t}^{(x, s)} \in d y\right)
$$

We know that p satisfies the Kolmogorov backward equation in the initial variables x and s. Namely,

$$
\partial_{s} p+L_{x} p=0, \quad \text { and } \quad \lim _{s \rightarrow t^{-}} p(\cdot, s ; y, t)=\delta_{y}
$$

where

$$
L=\sum_{i} b_{i} \partial_{i}+\frac{1}{2} \sum_{i, j} a_{i, j} \partial_{i, j}
$$

and

$$
a_{i, j}=a_{i, j}(x)=\sum_{k} \sigma_{i, k}(x) \sigma_{j, k}(x) .
$$

The Kolmogorov forward equation says that p satisfies the dual equation in the variables y, t.

Proposition 1 (Kolmogorov forward equation). Let L^{*} be the dual of L, defined by

$$
L^{*} g=\sum_{i}-\partial_{i}\left(b_{i} g\right)+\frac{1}{2} \sum_{i, j} \partial_{i, j}\left(a_{i, j} g\right) .
$$

Then

$$
\partial_{t} p-L_{y}^{*} p=0, \quad \text { and } \quad \lim _{t \rightarrow s^{+}} p(x, s ; \cdot, t)=\delta_{x},
$$

Remark. The operator L^{*} is the dual of L with respect to the L^{2} inner product. Namely, if $f, g \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$, then

$$
\int_{\mathbb{R}^{d}} L f(x) g(x) d x=\int_{\mathbb{R}^{d}} f(x) L^{*} g(x) d x
$$

Proof. Fix $T>0$, and always assume $0 \leqslant s<t \leqslant T$. Let $f \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$, and define

$$
u(x, s)=E^{(x, s)} f\left(X_{T}\right)=\int p(x, s ; y, T) f(y) d y
$$

We know that u satisfies the Kolmogorov backward equation

$$
\begin{equation*}
\partial_{s} u+L_{x} u=0 \quad \text { and } \quad u(x, T)=f(x) . \tag{1}
\end{equation*}
$$

Also by the Markov property, it immediately follows that

$$
u(x, s)=E^{(x, s)} f\left(X_{t}\right)=\int p(x, s ; y, t) u(y, t) d y
$$

for any $t \in[s, T]$. (Alternately, you can deduce the above equality using uniqueness of solutions to (1).) Now, differentiating both sides in t, and using (1) gives

$$
\begin{aligned}
0=\partial_{t} u(x, s) & =\int\left[\partial_{t} p(x, s ; y, t) u(y, t)+p(x, s ; y, t) \partial_{t} u(y, t)\right] d y \\
& =\int\left[\partial_{t} p(x, s ; y, t) u(y, t)-p(x, s ; y, t) L_{y} u(y, t)\right] d y \\
& =\int\left[\partial_{t} p(x, s ; y, t)-L_{y}^{*} p(x, s ; y, t)\right] u(y, t) d y
\end{aligned}
$$

Note, to obtain the last inequality we had to integrate by parts. All the boundary terms involved are 0 because one can show that p vanishes at infinity.

Now choosing $t=T$, we see that

$$
\int\left[\partial_{t} p(x, s ; y, T)-L_{y}^{*} p(x, s ; y, T)\right] f(y) d y=0
$$

Since $f \in C_{0}^{2}$ is arbitrary, we are done.

