Homework Assignment 4

Assigned Thu 11/10. Due Mon 11/28.

1. Does there exist a process Y adapted to $\{\mathcal{F}_t^W\}_{t\geq 0}$ with $E \int_0^1 Y_s^2 ds < \infty$ such that

$$\int_0^1 Y_s \, dW_s = \int_0^1 \left(W_s^2 - \frac{1}{2} \right) \, ds?$$

If yes, find Y. If no, prove it.

- 2. For any $b \in \mathbb{R}$, define $\sigma(b) = \inf\{s \mid W_s s = b\}$. Show that $\lim_{b \to -\infty} \sigma(b) = \infty$ almost surely.
- 3. (a) Let

$$Z_t = \exp\left(\int_0^t 2W_s \, dW_s - \frac{1}{2} \int_0^t 4W_s^2 \, ds\right)$$

Verify that the Kazamaki and Novikov conditions will not directly show that $\{Z_t\}_{t\leq 1} \in$ $\mathcal{M}_c[0,1]$. [This process is however a martingale, as we will see below.]

- (b) Suppose $(t_n) \nearrow \infty$ is sequence of times such that $E \exp\left(\frac{1}{2} \int_{t_n}^{t_{n+1}} |b_s|^2 ds\right) < \infty$. Show that $Z_t = \exp\left(\int_0^t b_s \, dW_s - \frac{1}{2} \int_0^t |b_s|^2 \, ds\right)$ is a martingale. [Feel free to use the Novikov condition.]
- (c) Suppose there exists a constant C such that $|b_t(x)| \leq C(1+|x|)$. Show that

$$Z_t = \exp\left(\int_0^t b_s(W_s) \, dW_s - \frac{1}{2} \int_0^t |b_s(W_s)|^2 \, ds\right)$$

is a martingale. Conclude that the process defined in part (a) is in $\mathcal{M}_c[0,1]$.

4. (Harmonic functions) Let $\{W_t, \mathcal{F}_t\}$ and $\{P^x\}_{x \in \mathbb{R}^d}$ be Brownian family on \mathbb{R}^d , $D \subseteq \mathbb{R}^d$ be a bounded domain, and τ be the exit time of W from D. Given $f \in L^{\infty}(\partial D, \mathcal{B})$, we define

$$u(x) = E^x f(W_\tau) \tag{1}$$

(a) Suppose σ is a stopping time such that $\sigma \leq \tau$. Show that

$$u(x) = E^x u(W_\sigma).$$

(b) (Mean value property) Suppose $B(x, R) \subseteq D$, and let σ be the exit time of W from B(x, R). Show that

$$u(x) = \frac{1}{|\partial B(x,R)|} \int_{B(x,R)} u(y) \, d\sigma(y) \tag{2}$$

where σ denotes the surface measure on $\partial B(x, R)$.

It is a standard PDE result that once (2) is satisfied, $u \in C^2(D)$, and is harmonic (i.e. $\Delta u = 0$). However, without use of the mean value property, we can directly show that u is harmonic provided we assume $u \in C^2(D)$.

- (c) If additionally $u \in C^2(D)$, show that $\Delta u = 0$.
- (d) Conversely, if $v \in C^2(D) \cap C(\overline{D})$ satisfies $\Delta v = 0$ in D, and v = f on ∂D , show that $v(x) = E^x f(W_\tau).$