Homework Assignment 2

Assigned Thu 10/06. Due Wed 10/26.

1. Let B be a standard 1D Brownian motion. Show that each of the following are also standard 1D Brownian motions:
(a) $\left\{-B_{t}\right\}_{t \geqslant 0}$
(b) $\left\{\frac{1}{\sqrt{\lambda}} B_{\lambda t}\right\}_{t \geqslant 0}$, for any $\lambda>0$.
(c) $W_{t}=t B_{\frac{1}{t}}$ for $t>0$, and $W_{0}=0$.
(d) $\left\{B_{s+t}-B_{s}\right\}_{t \geqslant 0}$ for any fixed $s \geqslant 0$.
2. Say X_{t} is a process with independent increments. Show that if $s<t, X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X}. [Recall $\mathcal{F}_{t}^{X}=\sigma\left(\cup_{s \leqslant t} \sigma\left(X_{s}\right)\right)$. Also, X has independent increments means that for any finite sequence $0=t_{0}<t_{1} \cdots<t_{n}$, the family of random variables $\left\{X_{t_{0}}, X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right\}$ is independent.]
3. Suppose X is process with continuous trajectories and independent, stationary increments. (Recall, a process has stationary increments if the distribution of the increment $X_{t+h}-X_{t}$ only depends on h, and not on t.) Assume (for normalization) that $X_{0}=0=E X_{1}$ and $E X_{1}^{2}=1$. If further $E X_{1}^{4}<\infty$, then show that $X \in \mathcal{M}_{c}^{2}$, and $\langle X\rangle_{t}=t$. [Thus if you know Lévy's criterion, X is a standard Brownian motion.]
4. For any $\lambda>0$, we define the Poisson process with intensity λ as follows. Let τ_{i} be a sequence of i.i.d exponential random variables with parameter λ (i.e. $P\left(\tau_{i} \in d t\right)=\frac{1}{\lambda} e^{-\lambda t}$). Let $\sigma_{n}=\sum_{1}^{n} \tau_{i}$. The intuition is that τ_{i} is the time at which the $i^{\text {th }}$ customer arrives, and σ_{n} is the time it takes for the first n customers to arrive.

Now we define $N_{t}=\max \left\{n \in \mathbb{N} \mid \sigma_{n} \leqslant t\right\}$ to be the number of customers who've arrived up to time t. This is called the Poisson process with intensity λ.
(a) Show that $N_{t}-N_{s}$ is an integer valued Poisson random variable with parameter $\lambda(t-s)$. Further, show $N_{t}-N_{s}$ is independent of \mathcal{F}_{s}^{N}. [Thus N is a process with stationary, independent increments, that is not a Brownian motion. This is a counter example to the previous example, if the continuity in time assumption is dropped.]
(b) Show that $\left\{\left(N_{t}-\lambda t\right)^{2}-\lambda t\right\} \in \mathcal{M}^{2}$. [This is the counter example to Lévy's criterion, if the continuity in time assumption is dropped.]
5. Let $M \in \mathcal{M}_{c}^{2}$, have absolutely continuous quadratic variation, and $X \in \mathcal{L}(M)$. Define $N=$ $I(X, M)$. If $Y \in \mathcal{L}(N)$, then show that $I(Y, N)=I(X Y, M)$.
6. Let $M \in \mathcal{M}_{c}^{2}$ have absolutely continuous quadratic variation. Suppose $X \in \mathcal{L}(M)$, and τ is a stopping time. Let \tilde{X} be defined by $\tilde{X}_{t}=\chi_{\{t \leqslant \tau\}} X_{t}$. Show that $\tilde{X} \in \mathcal{L}(M), X \in \mathcal{L}\left(M^{\tau}\right)$, and $I(\tilde{X}, M)=I\left(X, M^{\tau}\right)=I(X, M)^{\tau}$.

