Homework Assignment 1

Assigned Mon 09/12. Due Mon 10/03.

- 1. Let σ, τ be two stopping times.
 - (a) Show that $\sigma \wedge \tau$, $\sigma \vee \tau$, $\sigma + \tau$ are also stopping times.
 - (b) If $\sigma \leq \tau$ almost surely, then show $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$.
- 2. (a) Let $\{\mathcal{F}_n \mid n \in \mathbb{N}\}$ be a *decreasing* sequence of σ -algebras (i.e. $\mathcal{F}_n \supseteq \mathcal{F}_{n+1}$), and $\{X_n, \mathcal{F}_n \mid n \in \mathbb{N}\}$ be a backward submartingale (i.e. $E(X_n \mid \mathcal{F}_{n+1}) \ge X_{n+1}$). If $\inf_{n \in \mathbb{N}} EX_n > -\infty$, then show that $\{X_n \mid n \in \mathbb{N}\}$ is uniformly integrable.
 - (b) Let $\{X_t, \mathcal{F}_t\}$ be a right continuous submartingale. Show that the function $t \mapsto EX_t$ is right continuous.
- 3. Let $\{X_t, \mathcal{F}_t \mid 0 \leq t < \infty\}$ be a right continuous martingale. Show that the following are equivalent.
 - (a) $\{X_t \mid 0 \leq t \leq \infty\}$ is a uniformly integrable family of random variables.
 - (b) There exists $X_{\infty} \in L^1(\Omega, \mathcal{F}_{\infty})$ such that $X_t \to X_{\infty}$ in L^1 as $t \to \infty$. (Recall $\mathcal{F}_{\infty} = \sigma(\cup_t \mathcal{F}_t)$.)
 - (c) There exists $X_{\infty} \in L^1(\Omega, \mathcal{F}_{\infty})$ such that $X_t \to X_{\infty}$ almost surely and $\{X_t, \mathcal{F}_t \mid 0 \leq t \leq \infty\}$ is a martingale.
 - (d) There exists $X_{\infty} \in L^1(\Omega, \mathcal{F}_{\infty})$ such that $\{X_t, \mathcal{F}_t \mid 0 \leq t \leq \infty\}$ is a martingale.
- 4. Let X be an integrable, progressively measurable process such that $EX_{\tau} = 0$ for all stopping times τ such that $P(\tau < \infty) = 1$. Show that X is a martingale.
- 5. Let X be a continuous local martingale. Show that there exists a localizing sequence (τ_n) such that for all n, the stopped process $X^{\tau_n} = \{X_{\tau_n \wedge t}, \mathcal{F}_t\}$ is bounded almost surely. (Note, we say (τ_n) is a localising sequence if it is an increasing sequence of stopping times which converges to ∞ almost surely, and for all n, the stopped process X^{τ_n} is a martingale).
- 6. Given any process X, and $p \in [1, \infty)$ define the p^{th} variation of X to be the process

$$V^{p}(X)_{t} = \lim_{|\Delta_{n}| \to 0} \sum_{k} \left| X_{t_{k+1} \wedge t} - X_{t_{k} \wedge t} \right|,$$

provided for each t the limit exists in probability, and is independent of the sequence of partitions (Δ_n) . (As usual $\Delta_n = \{0 = t_0 < \cdots < t_N = T\}$ is a partition of [0, T], and we omit the dependence of t_k on n for convenience.) If $X \in \mathcal{M}^2_c$, show that $V^p(X)$ exists for all $p \in [1, \infty)$. Further, show $V^p(X) = 0$ for all p < 2 and $V^p(X) = \infty$ for all p > 2.

7. Let $M = \{M_t, \mathcal{F}_t \mid t \in [0, T)\}$ be a square integrable, continuous martingale with $M_0 = 0$ almost surely. Let $\langle M \rangle_{T^-}$ denote $\lim_{t \to T^-} \langle M \rangle_t$ (which exists since $\langle M \rangle$ is an increasing function of time). Show that

$$P\left(\{\langle M \rangle_{T^{-}} < \infty\}\Delta\left\{\lim_{t \to T^{-}} M_{t} \text{ exists, and is finite}\right\}\right) = 0$$

and
$$P\left(\{\langle M \rangle_{T^{-}} = \infty\}\Delta\left\{\overline{\lim_{t \to T^{-}}} |M_{t}| = \infty\right\}\right) = 0$$

Here $A\Delta B = A \cup B - A \cap B$ denotes the symmetric difference between A and B. [This is the moral equivalent of the statement $\lim_{t \to T^-} M_t$ exists and is finite "if and only if" $\lim_{t \to T^-} \langle M \rangle_t$ exists and is finite.]