880 Stochastic Calculus: Final.

Dec $15^{\text {th }}, 2011$

- This is a closed book test.
- You have 3 hours. The exam has a total of 7 questions and 30 points.
- You may use without proof any result that has been proved in class or on the homework.
- You may (or may not) find the questions getting progressively harder.

4 1. Let W be a standard 1D Brownian motion. Compute $\int_{0}^{t} \sin \left(W_{s}\right) d W_{s}$, and express your answer in the form $\int_{0}^{t} f\left(W_{s}, s\right) d s+g\left(W_{t}, t\right)$ for some explicit, deterministic functions f and g.
4 2. Let W be a standard 1D Brownian motion, and $f, g \in \mathcal{L}(W)$. Define the process X by

$$
X_{t}=\int_{0}^{t} f_{s} d s+\int_{0}^{t} g_{s} d W_{s}
$$

Find a necessary and sufficient criterion for f and g which guarantees that X is a standard 1D Brownian motion. Prove your answer.
3. Let W be a two dimensional Brownian motion starting from the point $(1,0) \in \mathbb{R}^{2}$. Let $X_{t}=\ln \left|W_{t}\right|$, $\tau_{n}=\inf \left\{t| | W_{t} \mid \leqslant 1 / n\right\}$ be the hitting time of W to the closed ball $\bar{B}(0,1 / n)$ [remember that W starts from $(1,0)$, outside this ball]. For all $n \in \mathbb{N}$, is $X^{\tau_{n}}$ a continuous martingale? Prove it. [Recall $X^{\tau_{n}}$ is the stopped process is defined by $X_{t}^{\tau_{n}}=X_{\tau_{n} \wedge t}$. Further, when addressing whether $X^{\tau_{n}}$ or not, the filtration in question is always the (augmented) Brownian filtration.]
4. Let $x \in \mathbb{R}^{2}$ be non-zero, and W be a two dimensional Brownian motion starting from x.
(b) Let $\tau=\inf \left\{t \geqslant 0 \mid W_{t}=0\right\}$. Compute $P(\tau=\infty)$.
5. Let W, X be as in Question 3. Is X a martingale? Prove it. [Again, the filtration in question is the (augmented) Brownian filtration.]
6. Let M be a continuous martingale, and suppose $E M_{t}^{2} \leqslant c\left(1+t^{\beta}\right)$ for some $c, \beta>0$. For any $\alpha>\frac{\beta}{2}$ show that $\lim _{t \rightarrow \infty} \frac{\left|M_{t}\right|}{t^{\alpha}}$ exists almost surely, and compute it's value.

4
7. Let X be a d-dimensional diffusion satisfying the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

where b and σ are time independent and Lipshitz. Let $D \subseteq \mathbb{R}^{d}$ be a domain, and τ be the exit time of X from D. Suppose

$$
u \in C^{2,1}(D \times(0, \infty)) \cap C(\bar{D} \times(0, \infty)) \cap C(D \times[0, \infty))
$$

satisfies

$$
\partial_{t} u-L u=0 \quad \text { in } D, \quad u(x, 0)=1 \quad \text { in } D, \quad u(x, t)=0 \quad \text { on } \partial D \times(0, \infty)
$$

where $L=\sum_{i} b_{i} \partial_{i}+\frac{1}{2} \sum_{i, j} a_{i, j} \partial_{i} \partial_{j}$, and $a_{i, j}=\sum_{k} \sigma_{i, k} \sigma_{j, k}$. Show that $u(x, t)=P^{x}(\tau \geqslant t)$. [Note: The maximum principle guarantees $0 \leqslant u(x, t) \leqslant 1$, which you may use in your solution.]

