
Math 372 Syllabus and Lecture Schedule.
Gautam Iyer, Spring 2012

Lecture 1, Mon 1/16: Introduction and motivation.

• (Sec. 1.1) Introduction.

– A PDE is a differential equation involving derivatives with respect to more
than one variable.

– Ubiquitous in nature

∗ Heat equation: ∂tu−4u = 0 governs evolution of temperature in a conduc-
tor.

∗ Wave equation: ∂2
t u−4u = 0 governs propagation of waves.

∗ Laplace equation: −4u = 0, satisfied by the stream function of an in-
compressible fluid. (Such functions are called Harmonic functions.) Steady
states of the unforced heat/wave equations.

∗ Poisson equation: −4u = 1 is the electrostatic potential distribution in
a conductor with uniform charge density. Steady states of the forced
heat/wave equation.

– No simple solution formula.

∗ Linear ODE’s have explicit solutions. Linear PDE’s usually do not.

∗ Elementary existence theorem for general ODE’s. Analogue for PDE’s in-
volves the assumption of analyticity. Counter examples exist if this assump-
tion is relaxed.

• (Sec. 1.2) Method of characteristics.

– Consider first a∂xu+ b∂xu = 0, where a, b are functions of x, y.

∗
(
a
b

)
· ∇u = 0 means the vector

(
a
b

)
is tangential to level sets of u.

Lecture 2, Wed 1/18: Method of characteristics.

∗ Solve the ODE dx
a = dy

b to find the level sets of u (called characteristic
curves).

∗ By solving the above ODE, find a function F so that F (x, y) = c describes
all characteristic curves.

∗ u(x, y) = f(F (x, y)) for an arbitrary f is the general solution.

– E.g. general solution of −y∂xu+ x∂yu = 0 is u = f(x2 + y2). Characteristics
are circles with center the origin.

– For 3D, same trick works. Consider the PDE aux + buy + cuz = 0

∗ Characteristics are given by the ODE dx
a = dy

b = dz
c .

∗ Solve these ODE’s, and write characteristics as in the form F (x, y, z) = c1,
and G(x, y, z) = c2 (where F,G are functions you should explicitly find),
and c1, c2 are constants.

∗ The general solution is of the form u(x, y, z) = f(F (x, y, z), G(x, y, z)),
where f : R2 → R is a general (differentiable) function.

– E.g. general solution of ux + 2uy + 3uz = 0 is of the form u(x, y, z) =
f(2x− y, 3x− z), where f : R2 → R is a general (differentiable) function.

Lecture 3, Fri 01/20: Derivation of PDE’s from physical principles.

– Solving first order, linear inhomogeneous equations by the method of charac-
teristics. (See the handout for details.)

• (Sec. 1.3) Derivation of PDE’s from Physics.

– One dimensional heat equation.

∗ Heat is proportional to temperature.

∗ Rate of heat flow is proportional to the temperature gradient.

∗ Show d
dt

∫ b
a
θ(x, t)cρ dx = α

∫ b
a
∂2
xθ(x, t) dx.

Lecture 4, Mon 1/23.

∗ Conclude ∂tθ = κ∂2
xθ.

– Higher dimensional heat equation

∗ State the Divergence theorem.

∗ Above reasoning shows ∂tθ = κ4θ.
– One dimensional transport equation.

∗ u – concentration of a pollutant in a (1D) flowing pipe.

∗ c – velocity of water flow (constant).

∗ Show d
dt

∫ b
a
u(x, t) dx = cu(a, t)− cu(b, t) = −

∫ b
a
∂xu(x, t) dx.

Lecture 5, Wed 01/25.

∗ Conclude ∂tu+ c∂xu = 0.

∗ MOC: u(x, t) = f(x− ct).
– One dimensional wave equation.

∗ u – displacement of a particle from it’s mean position.

∗ T – Tension in the string

∗ Conclude
∫ b
a
ρ∂2
t u(x, t) dx = T (ux(b, t) − ux(a, t)), and hence ∂2

t u = c2∂2
xu,

for c =
√

ρ
T .

∗ Higher dimensional wave equation: ∂2
t u−4u = 0.

Lecture 6, Fri 01/27: Boundary conditions.

• (Sec. 1.4) Auxiliary condition: Specify u(x, y) along some curve.

– E.g. Solve ∂xu+ y∂yu = u2, subject to the condition u(0, y) = f(y).

∗ Characteristics: y = c1e
x. General solution u(x, y) = −1/(x+ g(ye−x)).

∗ Auxiliary condition gives g(y) = −1/f(y), and substitute back.

• Boundary conditions.

– Dirichlet: Specify u on the boundary of the domain.
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∗ Heat equation: u = 0 on ∂D corresponds to holding the temperature of
the boundary of the conductor constant (e.g. by immersing it in a ‘bath’ of
constant temperature).

∗ Wave equation: u = 0 on the boundary corresponds to holding the endpoints
of a guitar string fixed.

∗ Poisson equation: Specifying u on the boundary corresponds to specifying
the voltage at the boundary.

– Neumann: Specify ∂u
∂n̂ (the normal derivative) on the boundary of the domain.

∗ Specifying the full derivative on ∂D is ‘too much’. Leads to inconsistencies
(proof later).

∗ Heat equation: ∂u
∂n = 0 on ∂D corresponds to perfectly insulated boundaries

(no heat exchanged with the surroundings).

∗ Wave equation: ∂u
∂n = 0 on ∂D corresponds to ‘no stress’ on the boundary.

E.g. allowing one end of the string to move freely in a track perpendicular
to the string.

∗ Poisson equation: Specifying ∂u
∂n on ∂D corresponds to specifying the current

at the boundary.

• Initial conditions: Specify conditions at time 0.

– Heat equation: Enough to specify u(x, 0) (initial temperature).

– Wave equation: Must specify both u(x, 0) (initial position), and ∂tu(x, 0) (ini-
tial velocity).

Lecture 7, Mon 1/30: One dimensional wave equation.

• (Sec. 2.1) Wave equation on the line

– Say ∂2
t u− c2∂2

xu = 0, for x ∈ R, t > 0.

– Let v = (∂t + c∂x)u. Then (∂t − c∂x)v = 0.

– M.O.C shows v(x, t) = h(x+ ct).

– By M.O.C, deduce u(x, t) = f(x− ct) + g(x+ ct).

– D’Alembert’s principle: If u(x, 0) = ϕ(x) and ∂tu(x, 0) = ψ(x), then u(x, t) =
1
2 (ϕ(x+ ct) + ϕ(x− ct)) + 1

2c

∫ x+ct

x−ct ψ.

Lecture 8, Wed 02/01: Conservation of Energy and Causality.

• (Sec. 2.2) Causality for the 1D wave equation.

– Domain of dependence is the inverted cone, bounded by particles travelling
with speed ±c.

– Domain of influence is the upright cone, bounded by particles travelling with
speed ±c.

– No information propagates faster than the speed c.

• (Sec. 2.2) Conservation of energy.

– The energy E =
∫∞
−∞(∂tu)2 + c2(∂xu)2 is constant in time.

– Uniqueness for initial value problem.

∗ Say u1, u2 are solutions to the forced wave equation ∂2
t u− c2∂2

xu = f , with
the same initial position and initial velocity, and decay sufficiently at ∞.

∗ Set v = u1 − u2. Then v is a solution to ∂2
t v − c2∂2

xv = 0.

∗ Conservation of energy implies
∫∞
−∞(∂tv)2 + (∂xv)2 is constant in time, and

hence must be 0 (the energy at time 0).

∗ Thus ∂xv = ∂tv = 0, and so v is constant in both space and time.

∗ Since v = 0 at time 0, v = 0 for all time. Consequently u1 = u2 as desired.

Lecture 9, Fri 02/03: Maximum principle.

• (Sec. 2.3) 1D Heat equation.

– Physical meaning: “Heat does not collect at hot points”.

– Lemma: Let R = (0, L)× (0, T ). If ∂tv − κ∂2
xv < 0, then v does not attain a

maximum in the interior of R, or on the top of R.

∗ At an interior maximum, ∂tv = 0 and ∂2
xv 6 0, which gives a contradiction.

– (Weak) Maximum principle: If ∂tu− κ∂2
xu 6 0, then v attains a maximum on

the sides or bottom of R. (The maximum, however, can also be attained at
interior points of R or on the top of R.)

∗ Proof: Let v(x, t) = u(x, t) + εx2. Verify ∂tv − κ∂2
xv < 0, apply the lemma,

and send ε→ 0.

– Note: The strong Maximum principle says that if v attains it’s maximum at
an interior point (x0, t0), then v must be constant up to time t0. The proof is
much harder, however, is still accessible to you!

Lecture 10, Mon 02/06.

– Maximum principle in higher dimensions. (Complete statement and proof on
your HW.)

• Uniqueness for the Dirichlet problem, initial value problem: If u1, u2 are solu-
tions to the forced heat equation ∂tu − κ4u = 0 in D, with initial conditions
u(x, 0) = ϕ(x), and Dirichlet boundary conditions u(x, t) = g(x, t) for x ∈ ∂D.
Then u1 = u2.

– Maximum principle proof: Set v = u1 − u2.

– By the maximum principle, both the maximum and minimum of v are attained
either at t = 0, or when x ∈ ∂D.

– By the given initial and boundary conditions, v = 0 both when t = 0 and
x ∈ ∂D. Consequently, by the maximum principle, v = 0 identically.

Lecture 11, Wed 02/08.

• Energy decay for the heat equation.

– Let u satisfy the heat equation with 0 Neumann (or 0 Dirichlet) B.C. Let

E(t) =
∫ L

0
u(x, t)2 dx. Then d

dtE 6 0.

∗ 1D case: dE
dt = 2

∫ L
0
u∂tu dx = 2κ

∫ L
0
u∂2

xu = 2κ
∫ L

0
(∂xu)2 6 0.
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∗ Higher dimensional case: Observe first
∫
D
u4u dV =

∫
D
u∇ · ∇u dV =∫

D

[
∇ · (u∇u)− |∇u|2

]
dV = −

∫
D
|∇u|2 dV +

∫
∂D

u ∂u∂n dS.

∗ The last boundary integral is 0 by the given boundary conditions.

∗ Consequently, dE
dt = −2κ

∫
D
|∇u|2 dV 6 0.

• (Sec. 2.4) Heat equation on the line.

– Let δ0 be a “point source of heat”, of strength 1, located at the origin. Suppose
u solves the heat equation with initial data δ0.

– Then v(x, t) = u(αx, α2t) also solves the heat equation, with initial data a
“point source of heat”.

–
∫
R v(x, t) dx = 1

α

∫
R u(x, t) dx. So the initial data for v should be a point source

with strength 1/α.

Lecture 12, Fri 02/10.

– Consequently, w(x, t) = αu(αx, α2t) is a solution to the heat equation with
initial data δ0. Consequently w = u.

– Consequently, u(x, t) = 1√
t
u( x√

t
, 1). Let r = x/

√
t, and f(r) = u(r, 1). Then

u(x, t) = 1/
√
tf(x/

√
t).

– Heat equation reduces to the ODE f ′′ + rf ′ + f = 0. Solve this:

∗ (f ′ + rf)′ = f ′′ + rf ′ + f = 0. So f ′ + rf = c1.

∗ er2/2 is an integrating factor: f = e−r
2/2c1

∫ r
0
es

2/2 ds+ c2e
−r2/2.

∗ Since f → 0 at ±∞, must have c1 = 0.

∗
∫∞
−∞ u(x, 1) dx =

∫∞
−∞ f(r) dr = 1 =⇒ c2 = 1√

2π
.

– Thus u(x, t) = G(x, t) = 1√
2πt

e−x
2/2t is the solution of the heat equation on

the line, with κ = 1
2 and initial data δ0 (a point source of strength 1, located

at the origin).

Lecture 13, Mon 02/13.

– Translating we see u(x, t) = G(x − y, t) is the solution to the heat equation
with initial data δy (a point source of strength 1 located at y).

– Approximate f by
∑
δyif(yi)(yi+1−yi), and see that u(x, t) =

∫∞
−∞ f(y)G(x−

y, t) is the desired solution with initial data f .

– Check that this works: ∂t − 1
2∂

2
xu =

∫∞
−∞ f(y)(∂t − 1

2∂
2
x)G(x− y, t) dy = 0.

– Checking u(x, 0) = f(x) is harder (will return to that next week).

– Rescaling time gives u(x, t) =
∫∞
−∞ f(y)G(x − y, 2κt) dy to be the solution to

∂tu− κ∂2
xu = 0 with initial data f .

– Formula above shows that for any t > 0, u is infinitely differentiable in both
x and t, regardless of how differentiable f was.

– Infinite speed of propagation. Domain of dependence of the point (x, t) is
(−∞,∞).

Lecture 14, Wed 02/15.

– Define the error function erf(x) = 2√
π

∫ x
0
e−y

2

dy.

– Write solutions in terms of the erf.

∗ E.g. f(x) = 1 for x 6 0, and f(x) = 0 for x > 0.

∗ u(x, t) = 1
2 (1 − erf(x/

√
4κt) solves the heat equation ∂tu − κ∂2

xu = 0 with
u(x, 0) = f(x) (for all x 6= 0).

– Strong maximum principle: If f is continuous and not identically constant,
u(x, t) < max f for any t > 0.

∗ Proof: u(x, t) =
∫
f(y)G(x−y, 2κt) dy <

∫
(max f)G(x−y, 2κt) dy = max f .

(Crucially uses the fact that
∫∞
−∞G(x, t) dx = 1 and G(x, t) > 0.)

Lecture 15, Fri 02/17: Midterm.

• In class, closed book. Covers everything up to Lecture 11 (Sec. 2.3).

Lecture 16, Mon 02/20.

• (Sec. 2.4) Comparison between the heat and wave equation.

– Initial data: Heat equation requires u(x, 0), wave requires u(x, 0) and ∂tu(x, 0).

– Smoothness of solutions: For t > 0, solutions to the heat equation are infinitely
differentiable, no matter how many times differentiable (or not differentiable)
the initial data is. Solutions to the wave equation are only as differentiable as
the initial data.

– Time reversibility: If u is a solution of the wave equation, then v(x, t) =
u(x, T − t) is also a solution (i.e. reversing time, gets back a solution to the
wave equation). For the heat equation, reversing time gets the “backward heat
equation” which forces heat to collect at hot points.

• (Sec. 3.3 & 3.4) Duhamel’s principle

– ODE version: ẏ −Ay = g(t), with y(0) = x.

∗ Let S(x, t) = eAtx be the solution operator of the homogeneous equation
ẏ = Ay, with y(0) = x.

∗ The solution to ẏ −Ay = g(t) is S(x, t) +
∫ t

0
S(g(s), t− s) ds.

Lecture 17, Wed 02/22.

– Heat equation: ∂tu− κ∂2
xu = g, u(x, 0) = f(x).

∗ The solution operator S(·, t) takes functions as the first argument, and out-
puts functions.

∗ Let S(f, t)(x) =
∫∞
−∞ f(y)G(x− y, 2κt) dy.

∗ Then u(x, t) = S(f, t)(x) +
∫ t

0
S(g(·, s), t− s) ds is the desired solution.

∗ Explicitly u(x, t) =
∫∞
−∞ f(y)G(x − y, 2κt) dy +

∫ t
0

∫∞
−∞ g(y, s)G(x − y, t −

s) dy ds.

– 2nd Order ODE: ÿ −Ay = h(t), with y(0) = a and ẏ(0) = b.

∗ Let S(x, t) solve ∂2
t S −AS = 0, with S(x, 0) = 0 and ∂tS(x, 0) = x.

∗ Then y(t) = ∂tS(a, t) + S(b, t) +
∫ t

0
S(g(s), t− s) ds is the desired solution.
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Lecture 18, Fri 02/24.

– Wave equation: ∂2
t u− c2∂2

xu = h, u(x, 0) = f(x), ∂tu(x, 0) = g(x).

∗ Let S(ψ, t)(x) = 1
2c

∫ x+ct

x−ct ψ(y) dy.

∗ Then u(x, t) = ∂tS(ϕ, t)(x) + S(ψ, t)(x) +
∫ t

0
S(g(·, s), t− s) ds.

∗ Explicitly, u(x, t) = 1
2 [ϕ(x+ ct) + ϕ(x− ct)] + 1

2c

∫ x+ct

x−ct ψ+ 1
2c

∫∫
∆
h, where

∆ is the domain of dependence of (x, t).

• (Sec. 3.5) Continuity of the heat equation at t = 0.

– G is an “approximate identity”. Namely, G has the following properties:

∗ G(x, t) > 0

∗
∫∞
−∞G(x, t) dx = 1

∗ For any δ > 0, lim
t→0+

∫
|x|>δ G(x, t) dx→ 0.

Lecture 19, Mon 02/27.

– If f is bounded, and continuous at x, then lim
t→0

u(x, t) = f(x).

∗ Pick any ε > 0. Then ∃δ > 0 such that whenever |z| < δ, we have
|f(z)− f(x)| < ε.

∗ |u(x, t)− f(x)| = |
∫∞
−∞G(y, t) [f(x− y)− f(x)] dy| =

∫
|y|<δ(·) +

∫
|y|>δ(·).

∗ First term:
∫
|y|<δ(·) 6 ε

∫
|y|<δ G(y, t) dy 6 ε

∗ Second term:
∫
|y|<δ(·) 6 2(max f)

∫
|y|<δ G(y, t) dy → 0 as t→ 0.

∗ So for t small, can make |u(x, t)− f(x)| < 2ε. QED.

• (Sec. 4.1) Separation of variables.

– Wave Equation, Dirichlet B.C.

∗ u(x, t) = X(x)T (t). Then X′′

X = T ′′

c2T = −λ.

∗ Hence X(x) = α sin(
√
λx) + β cos(

√
λx).

∗ X(0) = X(L) = 0 =⇒ λ = n2π2

L2 .

∗ Solve for T : T (t) = A sin(nπL ct) +B cos(nπL ct).

Lecture 20, Wed 02/29.

∗ Xn = sin(nπL x), Tn = An cos(nπL ct) +Bn sin(nπL ct), un(x, t) = Xn(x)Tn(t).

∗ Frequency of note heard is nc
2L . All frequencies heard are multiples of c/2L!

∗ u(x, t) =
∑∞

1 XnTn is a solution to the wave equation, with u(x, 0) =∑∞
1 An sin(nπL x), and ∂tu(x, 0) = Bn

nπc
L sin(nπL x).

– Heat Equation, Dirichet B.C.

∗ If u(x, t) = X(x)T (t) is a separated solution, then X′′

X = T ′′

c2T = −λ.

∗ As before, λ = n2π2

L2 , X(x) = sin(nπL x).

∗ Solve for T : T (t) = Ane
−n2π2

L2 κt

∗ u(x, t) =
∑∞

1 Xn(x)Tn(t) =
∑∞

1 Ane
−n2π2

L2 κt sin(nπL x), solves the heat
equation with Dirichlet B.C. and I.D. u(x, 0) =

∑
An sin(nπL x).

– Positivity of λ:

∗ If X ′′ = −λX, with X(0) = X(L) = 0, then λ =
∫ L
0

(X′)2∫ L
0
X2

> 0.

Lecture 21, Fri 03/02.

– Heat equation, Neumann B.C.:

∗ If u(x, t) = X(x)T (t) is a separated solution, then X′′

X = T ′′

c2T = −λ.

∗ As before, X(x) = α cos(
√
λx) + β sin(

√
λx).

∗ B.C. =⇒ X ′(0) = X ′(L) = 0 =⇒ λ = 0 with X(x) = α, or λ = n2π2

L2 with
X(x) = α cos(nπL x).

∗ Solve for T : T (t) = Ane
−n2π2

L2 κt

∗ u(x, t) =
∑∞

0 Xn(x)Tn(t) = A0

2 +
∑∞

1 Ane
−n2π2

L2 κt cos(nπL x), solves the heat

equation with Neumann B.C. and I.D. u(x, 0) = A0

2 +
∑∞

1 An cos(nπL x).

– Wave Equation, Neumann B.C.: Similar.

• (Sec. 5.1) Fourier Series

– Goal: Find the coefficients in the Fourier Sine and Cosine series.

– Lemma (Symmetry): f(0) = g(0) = 0 and f(L) = g(L) = 0 implies

〈f ′′, g〉 = 〈f, g′′〉. Here 〈h1, h2〉 =
∫ L

0
h1(x)h2(x) dx.

∗ Proof: Integrate by parts twice. (Sec. 5.3)

Lecture 22, Mon 03/05.

– Lemma (Orthogonality): If Xn(0) = Xn(L) = 0, X ′′n = −λnXn, then
〈Xm, Xn〉 = 0 whenever λm 6 λn.

∗ Proof: −λm〈Xm, Xn〉 = 〈X ′′m, Xn〉 = 〈Xm, X
′′
n〉 = −λn〈Xm, Xn〉.

∗ Consequently (λm − λn)〈Xm, Xn〉 = 0. (Sec. 5.3)

• Fourier Sine series.

– Let Xn = sin(nπL x), λn = n2π2

L2 .

– If f =
∑∞

1 BnXn, then Bn =
〈f,Xn〉
〈Xn, Xn〉

=
2

L

∫ L

0

f(x) sin(
nπ

L
x) dx.

∗ Proof: 〈f,Xm〉 =
∑∞
n=1Bn〈Xn, Xm〉 = Bm〈Xn, Xn〉, by the lemma.

• Fourier Cosine Series.

– Let Xn = cos(nπL x), and X0 = 1.

– Verify the Symmetry and Orthogonality lemmas for functions with Neumann
Boundary conditions (i.e. X ′(0) = X ′(L) = 0).

– If f(x) = A0

2 X0 +
∑∞

1 AnXn, then A0

2 = 〈f,X0〉
〈X0,X0〉 , and An = 〈f,Xn〉

〈Xn,Xn〉 .

– Consequently, An =
2

L

∫ L

0

f(x) cos(
nπ

L
x) dx, for n = 0, 1, 2, . . . .

Lecture 23, Wed 03/07: Digression – The Black Scholes formula.
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• Application of the Heat Equation to Option Pricing (by Kasper Larsen).

Lecture 24, Mon 03/19.

• (Sec. 5.2) Full Fourier series.

– Periodic boundary conditions: f(x+ 2L) = f(x) for all x.

– Write f(x) = A0

2 +
∑∞

1 An cos(nπL x) +Bn sin(nπL x).

– The symmetry and orthogonality lemmas give
∫ L
−L sin(mπL x) cos(nπL x) dx =∫ L

−L sin(mπL x) sin(nπL x) dx =
∫ L
−L cos(mπL x) cos(nπL x) dx = 0.

– Explicitly compute
∫ L
−L sin(nπL x) cos(nπL x) dx = 0.

– Get An = 1
L

∫ L
−L f(x) cos(nπL x) dx and Bn = 1

L

∫ L
−L f(x) sin(nπL x) dx.

• (Sec. 5.2) Complex Fourier series.

– Suppose f is 2L periodic and complex valued.

– Let en(x) = exp(inπL x), and want f(x) =
∑∞
−∞ cnen(x).

– Define 〈g, h〉 =
∫ L
−L g(x)h(x) dx.

– Directly check 〈en, em〉 = 0 if n 6= m. (This also follows from the symmetry,
orthogonality lemmas).

Lecture 25, Wed 03/21.

– Conclude cn = 〈f, en〉/〈en, en〉 = 1
2L

∫ L
−L f(x) exp(−inπL x) dx.

• (Sec. 5.3/5.4) Convergence of Fourier series

– Pointwise, uniform and L2 convergence.

– Uniform convergence implies pointwise convergence, but not conversely.

– Uniform convergence on a finite interval implies L2 convergence, but not con-
versely.

– Pointwise need not imply L2 convergence; L2 convergence need not imply
pointwise convergence.

– fn(x) = 1 if x ∈ (n, n+ 1) and 0 otherwise. Then (fn)→ 0 pointwise, but not
uniformly or in L2.

Lecture 26, Fri 03/23: Midterm.

• In class, closed book. Covers everything from Lecture 11 to Lecture 22.

Lecture 27, Mon 03/26.

– Let fn(x) = 1/2k if 2k 6 n < 2k+1, x ∈ [ n
2k
, n+1

2k
), and fn(x) = 0 otherwise.

Then (fn)→ 0 in L2[0, 1], but not pointwise or uniformly.

– Proof that uniform convergence on a finite interval implies L2 convergence.

– Pointwise, uniform and L2 convergence of series of functions.

∗ These are defined as the respective convergence of the partial sums.

– Bessel’s inequality:
∑∞

1 A2
n‖Xn‖2 6 ‖f‖2. (Here ‖f‖2 =

∫ L
0
|f(x)|2 dx, and

Xn are an orthogonal system, and An = 〈f,Xn〉
〈Xn,Xn〉 .)

∗ Pythagoras theorem: If 〈f, g〉 = 0, then ‖f + g‖2 = ‖f‖2 + ‖g‖2.

∗ Consequently, ‖SNf‖ =
∑N

1 A2
n‖Xn‖2. (Here SNf =

∑N
1 AnXn)

Lecture 28, Wed 03/28.

∗ 〈f − SNf, SNf〉 = 0 (since 〈f − SNf,Xn〉 = 0 for all n 6 N).

∗ Since f = (f−SNf)+SNf , the above three bullets imply Bessel’s inequality.

– Amongst all functions of the form PN
def
=
∑N

1 bnXN , SNf is the one that best
approximates f in the L2 norm

∗ Proof: Let ENf = f − SNf . Then 〈PN , ENf〉 = 0.

∗ Hence f − PN = ENf + (SNf − PN ). By above 〈ENf, SNf − PN 〉 = 0.

∗ By the Pythagoras theorem, ‖f − PN‖2 > ‖f − SN‖2. QED.

– Proposition: If PN is any sequence of functions of the form PN =
∑N

1 bn,NXn

such that PN → f in L2, then SNf → f in L2.

∗ Proof: ‖ENf‖2 6 ‖f − PN‖2, and the RHS converges to 0. QED.

– Proposition: The series
∑∞

1 AnXn converges to f in L2 if and only if

‖f‖2 =
∑∞

1 A2
n‖Xn‖2 (Parseval’s identity.)

∗ Proof (reverse): Say ‖f‖2 =
∑∞

1 A2
n‖Xn‖2.

∗ Then ‖ENf‖2 = ‖f‖2 − ‖SNf‖2 = ‖f‖2 −
∑N

1 A2
n‖Xn‖2 → 0. QED.

Lecture 29, Fri 03/30.

– Convergence of Cesàro sums.

∗ Let SNf(x) =
∑N
−N cne

inπL x, where cn = 1
2L

∫ L
−L f(x)e−i

nπ
L x.

∗ Show SNf(x) =
∫ L
−L f(y)DN (x− y) dy, where DN (z) = 1

2L

∑N
−N e

inπL z.

∗ Compute DN (z) =
sin
(
(N + 1

2 ) πLx
)

2L sin
(

1
2
π
Lx
)

∗ Define σNf = 1
N

∑N−1
n=0 SNf .

∗ Show σNf(x) =
∫ L
−L f(y)KN (x− y) dy, where KN (z) = 1

N

∑N−1
0 DN (z).

∗ Can compute KN (z) =
sin
(
N
2
π
Lx
)2

2NL sin
(

1
2
π
Lx
)2 [will be on Homework]

∗ Can check

∫ L

−L
KN (z) dz = 1, KN > 0, and lim

N→∞

∫
|z|>ε

z∈[−L,L]

KN (z) dz = 0,

for any ε > 0.

∗ Hence if f is continuous at x, then limN→∞ σNf(x) = f(x) (on HW).

∗ Further, if f is continuous on [−L,L] then (σNf)→ f uniformly on [−L,L].

∗ Consequently, (σNf) → f on L2[−L,L], and from last time this implies
(SNf)→ f in L2[−L,L].
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Lecture 30, Mon 04/02.

– General convergence theorems.

∗ If
∫ L

0
f(x)2 dx < ∞, then the Fourier Sine/Cosine series converges to f in

L2.

∗ At any point x ∈ (0, L) where f is continuous, then then Cesàro sums con-
verge but the partial sums need not.

∗ Consequently, if f is continuous on [0, L] and satisfies the boundary con-
ditions, then then then Cesàro sums converge pointwise, converge but the
partial sums need not.

∗ If f is differentiable at x ∈ (0, L) then the Fourier Sine/Cosine series con-
verges to f at x.

∗ Consequently, if f satisfies the boundary conditions, and is continuous and
piecewise differentiable then the Fourier Sine/Cosine series converge point-
wise to f .

∗ If further
∫ L

0
f ′(x)2 dx < ∞, then the Fourier Sine/Cosine series converge

uniformly.

∗ Analogous results hold for the full / complex Fourier series.

– Fourier coefficients of f ′.

∗ Suppose f is periodic, differentiable and
∫ L
−L f

′(x)2 dx <∞.

∗ Let cn be the (complex) Fourier coefficients of f , and dn those of f ′. Then
dn = inπL cn.

∗ Proof: Differentiating term by term is NOT JUSTIFIABLE! However, using
the formula for dn and integrating by parts gives the desired relation.

– Sobolev embedding: If
∑
|nscn|2 < ∞ for s > 1

2 , then f is continuous! (If
s > 3/2, then f is differentiable, and f ′ is continuous.)

∗ Proof: Try it yourself, if you konw the Cauchy-Schwartz inequality and the
Weirstrauss M test.

Lecture 31, Wed 04/04.

• (Sec. 6.1) Laplace and poisson equation.

– Laplace equation in upper half plane: ∂2
t u+ ∂2

x = 0, for t > 0 and x ∈ R.

∗ Differs from the wave equation by only a sign.

∗ Laplace equation only reqires the “initial position”, OR the “initial veloc-
ity”. Wave equation requires both.

∗ Laplace equation satisfies a maximum principle. Wave does not.

∗ Solutions to the Laplace equation are smooth for any t > 0. Solutions to
the wave equation are only as differentiable as the initial data.

∗ Wave equation has finite speed of propagation. The laplace equation does
not.

– Motivation: Steady states of the heat equation.

∗ The equilibrium temperature in a conductor satisfies −4u = f , where f is
the sources / sinks of heat.

∗ Dirichlet boundary conditions correspond to holding the temperature at the
boundary constant. Neumann boundary conditions correspond to insulating
the conductor.

– Electrodynamics: Electric electric potential.

∗ Maxwell’s equations reduce to −4u = ρ, where u is the electric potential
and ρ is proportional to the charge density.

∗ Dirichlet boundary conditions correspond to specifying the voltage at the
boundary. Neumann boundary conditions correspond to specifying the cur-
rent.

– Harmonic functions are functions that satisfy −4u = 0.

∗ The charge density in a perfect conductor is 0, so the electric potential is
harmonic.

∗ Equilibrium temperature in a conductor (in the absence of sources / sinks)
is also a harmonic function.

– Uniqueness: Suppose u1, u2 are solutions of −4u = f in Ω with u = g on ∂Ω.
Then u1 = u2.

∗ Proof: Let v = u1 − u2. Then −4v = 0 in Ω, and v = 0 on ∂Ω.

∗ By the divergence theorem −
∫

Ω
v4v = −

∫
∂Ω
v ∂v∂n̂ +

∫
Ω
|∇v|2.

∗ Consequently
∫

Ω
|∇v|2 = 0, forcing v to be a constant. Since v = 0 on ∂Ω,

we must have v = 0 identically.

Lecture 32, Fri 04/06.

• Laplacian in polar coordinates.

– Put x = r cos θ, y = r sin θ.

– Get r =
√
x2 + y2 and θ = tan−1(y/x).

– Compute ∂xr = cos θ, ∂yr = sin θ, ∂xθ = − 1
r sin θ, and ∂yθ = 1

r cos θ.

– Compute ∂xu = cos θ∂ru− 1
r sin θ∂θu, and ∂yu = sin θ∂ru+ 1

r cos θ∂θu

– Compute 4u = ∂2
ru+ 1

r∂ru+ 1
r2 ∂

2
θu.

• (Sec. 6.3) Laplace equation in a disk.

– Let D be a disc with center 0 and radius a.

– Let −4u = 0 in D, with u = f on ∂D.

– Switch to polar coordinates and separate variables.

∗ Let u(r, θ) = R(r)T (θ).

∗ Get r2R′′+rR′

R = −T
′′

T = λ

∗ Periodic boundary conditions on T gives T (θ) = cos(nθ), T (θ) = sin(θ), or
T (θ) = 1, and λ = n2 for n ∈ {0, 1, . . . }.

Lecture 33, Mon 04/09.

∗ Try R(r) = rα as a solution.

∗ Get α(α− 1) + α = n2, and hence α = ±n.

∗ Reject α = −n as X(r) = r−n blows up at r = 0.
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∗ Thus separated solutions are of the form rn cos(nθ), rn sin(nθ) and con-
stants.

∗ If the full Fourier series of f is f(θ) = A0

2 +
∑∞

1 An cos(nθ) + Bn sin(nθ),

then u(r, θ) = A0

2 +
∑∞

1 An
rn

an cos(nθ) +Bn
rn

an sin(nθ).

• Harmonic functions in a disk.

– Use complex notation. (x, y) = z = reiθ.

– Write f(θ) =
∑∞
−∞ cne

inθ.

– Then u(x, y) =
∑∞
−∞ cn

rn

an e
inθ.

– Since cn = 1
2π

∫ π
−π f(φ)e−inφ dφ, we have u(r, θ) =

∫ π
−π P (r, θ − φ) f(θ) dθ,

where P (r, θ) = 1
2π

[
1 +

∑∞
1

rn

an (einθ + e−inθ)
]
.

– Compute P (r, θ) = 1
2π

a2−r2
a2+r2−2ar cos(θ)

– As r → a−, P behaves like an approximate identity:

∗
∫ π
−π P (r, θ) dθ = 1 (Proof: P (r, θ) = 1

2π (1 +
∑

2( ra )n cos(nθ)).)

∗ P (r, θ) > 0 for 0 6 r < a. (Proof: |cos θ| 6 1, so P (r, θ) > a2−r2
2π(a+r)2 > 0.)

∗ For any ε > 0, lim
r→a−

∫
|θ|>ε P (r, θ) = 0. (Proof: on HW).

Lecture 34, Wed 04/11.

– limr→a− P (r, θ) = 0 if θ 6= 0, and ∞ otherwise.

∗ Proof: P (r, θ) = 1
2π

a2−r2
(a−r)2+2ar(1−cos θ) .

• Poissons formula:

– If −4u = 0 in some domain D, and a disk with center x0, and radius a

is completely contained inside D, then u(x) = a2−|x−x0|2
2πa

∫
|y−x0|=a

u(y)

|x−y|2 dy

whenever |x− x0| < a.

• Mean value property: 4u = 0, then u(x) = 1
2πr

∮
|y−x|=r u(y) dy. [Note, the RHS

is a line integral over the circle with center x0 and radius a.]

– Proof: use the Poisson formula.

• Strong maximum principle: If 4u = 0 in D, then u attains it’s maximum (and
minimum) only on ∂D, unless u is constant.

– Proof: Use the mean value property.

Lecture 35, Fri 04/13.

• Weak Maximum principle including convection terms. Let Lu = −4u+ b · ∇u,
with b bounded. Suppose Lu 6 0 in a (bounded) domain D, and u is con-
tinuous up to the boundary of D. Then u attains it’s maximum on ∂D (i.e.,
max
D

u 6 max
∂D

u).

– Lemma: Suppose first Lv < 0. Then v has no interior maximum in D.

∗ Proof: At an interior maximum x0, ∇u = 0 and 4u > 0, contradicting
Lu < 0.

∗ Now let v = u+ εeλx, for λ to be chosen later.

∗ Compute Lv = Lu+ ε
(
−λ2eλx + λb1

)
eλx.

∗ Know Lu 6 0. Choosing λ < max b1 will guarantee the second term is
stricitly negative.

∗ So Lv < 0, and by the Lemma maxD v 6 max∂D v.

∗ As before, max
D

u 6 max
D

v 6 max
∂D

v 6 max
∂D

u+ εeλL, and send ε→ 0.

Lecture 36, Mon 04/16.

• (Sec. 7.1) Greens Identities

– Greens first identity: D ⊆ R3 bounded.
∫
D
u4v +

∫
D
∇u · ∇v =

∫
∂D

u ∂v∂n .

∗ Proof: Divergence theorem applied to ∇ · (u∇v) = u4v +∇u · ∇v.

– Dirichlet’s principle: The function minimising the energy E(u)
def
=
∫
D
|∇u|2

subject to u = f on ∂D, is the harmonic function with boundary values f .

∗ Proof: Let v be any function which is 0 on ∂D. Must have d
dεE(u+ εv) = 0

when ε = 0.

∗ Greens identity gives
∫
D
v4u = 0.

∗ Since this is true for any v, must have 4u = 0.

– The above shows that if u minimises E, then we must have 4u = 0. We need
to also check the converse: Namely if 4u = 0, then u minimises E.

∗ Proof: Let u, v = f on ∂D, and suppose 4u = 0 in D.

∗ Set w = u− v; then v = u− w and w = 0 on ∂D.

∗ Green’s identity implies
∫
D

(∇u) · (∇w) =
∫
∂D

w ∂u
∂n̂ −

∫
D
w4u = 0.

∗ Thus E(v) =
∫
D
|∇u|2 + |∇w|2 − 2(∇u) · (∇w) = E(u) + E(w) > E(u).

Lecture 37, Wed 04/18.

• The Rayleigh quotient: Let E(u) = (
∫
D
|∇u|2)/

∫
D
u2. Minimise E, over all

functions u which are 0 on ∂D.

– Let ε ∈ R, and v be any function which is 0 on ∂D.

– Suppose λ = minE, and is attained for the function ϕ.

– Green’s identity shows d
dε (ϕ+ εv)

∣∣
ε=0

= 0 iff
∫
D
v(−4ϕ− λϕ) = 0.

– Eigenfunctions of the Laplacian are candidates for the minimiser of E.

• Let ϕ solve −4ϕ = λϕ, with ϕ = 0 on ∂D, and ϕ > 0 in D.

– This is called the Principal eigenfunction. It’s existence (positivity) is equiv-
alent to the maximum principle!

– Claim: ϕ minimises E.

∗ Proof: Let ε > 0, and u be any function with u = 0 on ∂D.

∗ Compute λ
∫
D
u2 ϕ

ϕ+ε = −
∫
D

u2

ϕ+ε4ϕ 6
∫
D
|∇u|2 (Greens identity, and com-

pleting the square).

∗ Send ε→ 0. QED.
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Lecture 38, Mon 04/23.

• (Sec. 7.2) Greens second identity:
∫
∂D

u ∂v∂n̂ − v
∂u
∂n̂ =

∫
D
u4v − v4u.

– Divergence theorem applied to ∇ · (u∇v − v∇u) = u4v − v4u.

• Mean value property: If 4u = 0 in BR, a 3D ball of radius R and center x0.
Then u(x0) = 1

4πR2

∫
∂BR

u(x) dx (the RHS is a surface integral).

– Proof: Without loss assume x0 = 0.

– Let v(x) = 1
|x| . Know (from HW) 4v = 0 for x 6= 0.

– For ε > 0, let Dε = BR − B̄ε = {x ∈ R3 | ε < |x| < R}.
– Greens identity implies

∫
Dε
u ∂v∂n̂ − v

∂u
∂n̂ = 0.

–
∫
Dε

(·) =
∫
BR

(·) +
∫
Bε

(·). (The normal derivative points radially inward on

∂Bε, and radially outward on ∂BR.)

– Compute
∫
∂BR

u ∂v∂n̂ − v
∂u
∂n̂ = − 1

R2

∫
∂BR

u(x) dx.

– Similarly
∫
∂Bε

u ∂v∂n̂−v
∂u
∂n̂ = 1

ε2

∫
∂Bε

u(x) dx
ε→0−−−→ 4π u(0), since u is continuous

at 0.

– Since
∫
∂BR

(·) =
∫
Bε

(·), we get u(0) = 1
4πR2

∫
∂BR

u(x) dx. QED.

Lecture 39, Wed 04/25.

• Representation formula: If D ⊆ R3, and 4u = 0 in D. Then

u(x0) =

∫
∂D

[u(x)
∂N

∂n̂
(x− x0)−N(x− x0)

∂u

∂n̂
(x)] dx,

where N(x) = 1
4π|x| is the Newton potential. (Recall 4N = 0 when x 6= 0).

– Remark: For a 2D domain, the same formula is true with N(x) = 1
2π ln|x|.

– Proof: Without loss, x0 = 0. Let Dε = D − {x ∈ D | |x| > ε}, and
Bε = {x | |x| < ε}.

– Greens identity implies
∫
∂Dε

u∂N∂n̂ −N
∂u
∂n̂ = 0.

–
∫
∂Dε

(·) =
∫
∂D

(·) +
∫
∂Bε

(·), where the normal derivative points radially inward
on ∂Bε, and outward to D on ∂D.

–
∫
∂D

(·) is the RHS we want.

–
∫
∂Bε

(·) ε→0−−−→ −u(x0), exactly as before. QED

• Corollary: Another proof of the Mean value property.

– Proof: Put D = {x | |x− x0| = R, in the representation formula.

Lecture 40, Fri 04/27.

• Physical intuition behind the Newton potential.

– N is the steady temperature obtained from a point sink of heat located at 0.

– Symmetry forces N(x) = f(|x|).

– Computing heat flux through ∂BR gives
∫
∂BR

∂N
∂n̂ = 1.

– Consequently 4πf ′(R)2 = 1 for all R, forcing N(x) = −1
4π|x| , as we had.

• (Sec. 7.3) Greens functions.

– G(x, x0) is the greens function of a domain D ⊆ R3 if it has the following
properties:

∗ For x 6= x0, all second order partials of G (w.r.t. x) are continuous and
4G(x, x0) = 0.

∗ G(x, x0) = 0 on ∂D

∗ H(x) = G(x, x0)−N(x− x0), for x 6= x0 extends to a continuous harmonic
function in D.

– If 4u = 0 in D and u = f on ∂D, then u(x0) =
∫
∂D

f(x)∂G∂n̂ (x, x0).

∗ Proof: Know u(x0) =
∫
∂D

u(x)∂N∂n̂ (x− x0)−N(x− x0) ∂u∂n̂ .

∗ By greens identity,
∫
∂D

u∂H∂n̂ −H
∂u
∂n̂ = 0.

∗ Since G(x, x0) = H(x) + N(x − x0), adding the above two identites (and
using G(x, x0) = 0 for x ∈ ∂D) finishes the proof.

• Symmetry of Greens functions: G(a, b) = G(b, a).

– Proof: Put u(x) = G(x, a) and v(x) = G(x, b).

– Let Dε = {x ∈ D | |x− a| > ε & |x− b| > ε}.
– Greens identity:

∫
∂Dε

u ∂v∂n̂ − v
∂u
∂n̂ = 0.

–
∫
∂Dε

=
∫
∂D

+
∫
∂B(a,ε)

+
∫
∂B(b,ε)

, with the usual convention about normals.

– Since u = v = 0 on ∂D,
∫
D

(·) = 0.

– Claim:
∫
∂B(a,ε)

u ∂v∂n̂ − v
∂u
∂n̂ = v(a), and

∫
∂B(b,ε)

u ∂v∂n̂ − v
∂u
∂n̂ = −u(b).

– Claim finishes the proof, since v(a) = u(b) ⇐⇒ G(a, b) = G(b, a).

Lecture 41, Mon 04/30.

– Proof of claim.

∗ In B(a, ε), v is harmonic and u(x) = H(x) + N(x − a) for some harmonic
function H.

∗ Greens identity implies
∫
∂B(a,ε)

H ∂v
∂n̂ − v

∂H
∂n̂ = 0.

∗ Representation formula implies
∫
∂B(a,ε)

N(x − a) ∂v∂n̂ − v
∂N
∂n̂ (x − a) = v(a).

(The sign is reversed, since the normal vector is inward pointing).

∗ Adding gives
∫
∂B(a,ε)

u ∂v∂n̂ − v
∂u
∂n̂ = v(a). QED.

– Physical interpretation: Steady temperature at a caused by a point sink at b
is the same as a steady temperature at b caused by a point sink at a.

Lecture 42, Wed 05/02.

• Greens function in Half-Space.

– D = {(x, y, z) | z > 0}. G(x, x0) = N(x − x0) −N(x − x∗0), where x0∗ is the
image of the point x0 reflected about the x-y plane.
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– Consequently the solution to −4u = 0 in D with u = f on ∂D is given by

u(x) =

∫
∂D

f(y)G(x, y) dy =
x3

2π

∫∫
f(y1, y2, 0) dy1 dy2

[(x1 − y1)2 + (x2 − y2)2 + x2
3]3/2

.

• Greens function in a shpere

– D = {x ∈ R3 | |x| < a}.

– Let x0 ∈ D, and x∗0 = a
|x0|2

x0. Then G(x, x0) = N(x− x0) +N( |x0|
a (x− x∗0)).

– Basic congruent triangles argument shows G(x, x0) = 0 when x ∈ ∂D.

– Compute
∂G

∂n̂
=

a2 − |x0|2

4πa|x− x0|3
.

– 3D Poisson formula. If 4u = 0 in D and u = f on ∂D, then u(x0) =∫
x∈∂D

a2−|x0|2

4πa|x−x0|3
f(x) dx. (Surface integral over the sphere of radius a)


