21-372 PDE: Midterm 1.

Feb $17^{\text {th }}, 2012$

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 4 questions and 40 points.
- You may use without proof any result that has been proved in class or on the homework, provided you CLEARLY state the result you are using.
- You may assume that all mixed partials are equal, and differentiate under the integral without justification.
- Difficulty wise: $\# 1 \leqslant \# 2 \leqslant \# 3<\# 4$ (the last inequality is strict). Good luck!

1. Let $c \in \mathbb{R}$ be a non-zero constant, and suppose u solves the wave equation

$$
\partial_{t}^{2} u-c^{2} \partial_{x}^{2} u=0, \quad \text { for } x \in \mathbb{R}, t>0
$$

with initial data $u(x, 0)=\varphi(x)$, and $\partial_{t} u(x, 0)=\psi(x)$.
3. Suppose u is a solution of the PDE

$$
\partial_{t} u+u \partial_{x} u=1 \quad \text { for } x \in(0,1), t>0
$$

with boundary conditions

$$
u(0, t)=u(1, t)=0, \quad \text { for } t>0
$$

Let

$$
a=\int_{0}^{1} u(x, 0) d x, \quad b=\int_{0}^{1} u(x, 0)^{2} d x, \quad \text { and } \quad E(t)=\int_{0}^{1} u(x, t)^{2} d x .
$$

Compute $E(t)$ explicitly as a function of t, a and b. [WARNING: The method of characteristics does NOT help here. Hint: Compute $\frac{d E}{d t}$, and use it to compute $\frac{d^{2} E}{d t^{2}}$.]

10 4. Let u be a solution of the heat equation

$$
\partial_{t} u-\partial_{x}^{2} u=0, \quad \text { for } x \in(-1,1), t \geqslant 0
$$

with initial data $u(x, 0)=1-x^{2}$ and Dirichlet boundary conditions

$$
u(-1, t)=u(1, t)=0 \quad \text { for } t>0
$$

Show that for every $x \in(-1,1)$, the function $f(t)=u(x, t)$ is non-increasing as a function of t.

