Assignment 13: Assigned Wed 04/18. Due Wed 04/25

- 1. Sec. 6.4. 4, 12.
- 2. Let *D* be a disc with center 0 and radius 1. Let *f* be some function with $\int_{-\pi}^{\pi} f(\theta)^2 d\theta < \infty$, and *u* be the solution of $-\Delta u = 0$ in *D* with u = f on ∂D . Define *g* to be the indefinite integral

$$g(\theta) = \int \lim_{r \to 1^-} \partial_r u(r, \theta) \, d\theta + c$$

where the constant of integration c is chosen such that $\int_{-\pi}^{\pi} g(\theta) d\theta = 0$. The function g is called the (periodic) *Hilbert Transform* of f.

- (a) Compute the (complex) Fourier coefficients of g in terms of those of f. [For this subpart, feel free to pass the appropriate derivatives/integrals/limits through an infinite sum. You'll get extra credit for rigorously justify all the operations you do.]
- (b) Guess a formula (and explain your guess) for a function K so that $g(\theta) = \int_{-\pi}^{\pi} f(\phi) K(\theta \phi) d\phi$. [The reason I say guess is because you will have $\int_{-\pi}^{\pi} |K(\phi)| d\phi = +\infty$; consequently, the integral $\int_{-\pi}^{\pi} K(\theta \phi) f(\phi) d\phi$ will be undefined in the usual Riemann (or even Lebesgue!) sense. If f is differentiable it turns out that the symmetric limit $\lim_{\varepsilon \to 0^+} \int_{|\theta \phi| > \varepsilon} f(\phi) K(\theta \phi) d\phi$ will always exist. Extending this to the situation where f is merely continuous (or just integrable!) but requires some non-trivial Harmonic analysis developed by Calderón and Zygmund. Wikipedia 'Hilbert Transform' to see some applications.]
- (c) If $\int_{-\pi}^{\pi} f = 0$, find a relationship between ||f|| and ||g||.
- (d) Using part (a), guess a formula for the (complex) Fourier coefficients of K. Verify your guess by computing explicitly

$$\frac{1}{2\pi} \lim_{\varepsilon \to 0^+} \int_{\substack{\theta \in [-\pi,\pi] \\ |\theta| > \varepsilon}} K(\theta) e^{in\theta} \, d\theta$$

- 3. Suppose $D \subseteq \mathbb{R}^2$ is a bounded domain completely contained inside a disk of radius R. Suppose τ is the solution of $-\Delta \tau = 1$ in D, and $\tau = 0$ on ∂D . What sign must τ have in D? Find a constant c > 0, which only depends on R such that $\tau(x) \leq c$ for all $x \in D$. [HINT: The maximum principle quickly implies that if $-\Delta u \geq 1$ in D and $u \geq \tau$ on ∂D , then $u \geq \tau$ inside D. Cleverly choose u. Unrelated trivia: If you start a continuous time random walker (Brownian motion) at the point $x \in D$, then average time it will take to exit D is exactly $2\tau(x)$.]
- 4. Let $D = [0, L] \times [0, L]$, and b be some (bounded) vector function. Suppose u is a solution of the PDE $-\triangle u + b \cdot \nabla u = b_1$, with u = 0 on ∂D . (Note: b_1 is the first component of the vector b.) Find a constant c which only depends on L such that $u(x) \leq c$ for all $x \in D$. [This is a short, but tricky, application of the maximum principle.]

5. Sec. 7.1. 5, 7

Assignment 14: Assigned Wed 04/25. Due Wed 05/02

- 1. Sec. 7.1. 6.
- 2. Sec. 7.2. 1.
- 3. Sec. 7.3. 1, 2
- 4. Sec. 7.4. 1, 3.
- 5. (Hopf lemma revisited) Here's a simpler way to do 6.4.12 than the online solution. (Consequently, you may *not* use the Hopf lemma for this proof.)
 - (a) Given $0 < R_0 < R_1$, let $A(R_0, R_1)$ be the annulus $\{x \in \mathbb{R}^2 \mid R_0 < |x| < R_1\}$. Given two constants c_0 and c_1 , find the solution to the PDE $-\Delta v = 0$ in $A(R_0, R_1)$, with $v = c_0$ on the inner boundary, and $v = c_1$ on the outer boundary.
 - (b) If $c_0 < c_1$, verify that $\partial_r v(R_1, \theta) > 0$.
 - (c) Let $B_R = \{x \in \mathbb{R}^2 \mid |x| < R\}$. Suppose u is some function such that $-\Delta u \leq 0$ in B_R , and u attains a maximum at some point $x_0 \in \partial B_R$. Suppose further $u(0) < u(x_0)$. Show that $\partial_r u(x_0) > 0$. [HINT: Observe first that for some R_0 small enough, $c_0 = \max_{|x|=R_0} < u(x_0)$. Let $c_1 = u(x_0)$ and use the maximum principle and previous subparts.]
 - (d) (Strong maximum principle) Suppose $D \subseteq \mathbb{R}^2$ is some domain, and u is a non-constant function with $-\Delta u \leq 0$ in D. Show that u can not attain an interior maximum.
 - (e) (Hopf lemma) Suppose $D \subseteq \mathbb{R}^2$ is a domain with a smooth boundary. Suppose u is a non-constant function satisfying $-\Delta u \leq 0$ in D, and is continuous up to the boundary of D. If u attains it's maximum at a point $x_0 \in \partial D$, show that $\frac{\partial u}{\partial \hat{n}} > 0$ at x_0 , where \hat{n} is the outward pointing unit normal vector.