Assignment 13: Assigned Wed 04/18. Due Wed 04/25

1. Sec. 6.4. $4,12$.

2. Let D be a disc with center 0 and radius 1 . Let f be some function with $\int_{-\pi}^{\pi} f(\theta)^{2} d \theta<\infty$, and u be the solution of $-\triangle u=0$ in D with $u=f$ on ∂D. Define g to be the indefinite integral

$$
g(\theta)=\int \lim _{r \rightarrow 1^{-}} \partial_{r} u(r, \theta) d \theta+c
$$

where the constant of integration c is chosen such that $\int_{-\pi}^{\pi} g(\theta) d \theta=0$. The function g is called the (periodic) Hilbert Transform of f.
(a) Compute the (complex) Fourier coefficients of g in terms of those of f. [For this subpart, feel free to pass the appropriate derivatives/integrals/limits through an infinite sum. You'll get extra credit for rigorously justify all the operations you do.]
(b) Guess a formula (and explain your guess) for a function K so that $g(\theta)=$ $\int_{-\pi}^{\pi} f(\phi) K(\theta-\phi) d \phi$. [The reason I say guess is because you will have $\int_{-\pi}^{\pi}|K(\phi)| d \phi=$ $+\infty$; consequently, the integral $\int_{-\pi}^{\pi} K(\theta-\phi) f(\phi) d \phi$ will be undefined in the usual Riemann (or even Lebesgue!) sense. If f is differentiable it turns out that the symmetric limit $\lim _{\varepsilon \rightarrow 0^{+}} \int_{|\theta-\phi|>\varepsilon} f(\phi) K(\theta-\phi) d \phi$ will always exist. Extending this to the situation where f is merely continuous (or just integrable!) but requires some non-trivial Harmonic analysis developed by Calderón and Zygmund. Wikipedia 'Hilbert Transform' to see some applications.]
(c) If $\int_{-\pi}^{\pi} f=0$, find a relationship between $\|f\|$ and $\|g\|$.
(d) Using part (a), guess a formula for the (complex) Fourier coefficients of K. Verify your guess by computing explicitly

$$
\frac{1}{2 \pi} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\substack{\theta \in[-\pi, \pi] \\|\theta|>\varepsilon}} K(\theta) e^{i n \theta} d \theta
$$

3. Suppose $D \subseteq \mathbb{R}^{2}$ is a bounded domain completely contained inside a disk of radius R. Suppose τ is the solution of $-\triangle \tau=1$ in D, and $\tau=0$ on ∂D. What sign must τ have in D ? Find a constant $c>0$, which only depends on R such that $\tau(x) \leqslant c$ for all $x \in D$. [Hint: The maximum principle quickly implies that if $-\triangle u \geqslant 1$ in D and $u \geqslant \tau$ on ∂D, then $u \geqslant \tau$ inside D. Cleverly choose u. Unrelated trivia: If you start a continuous time random walker (Brownian motion) at the point $x \in D$, then average time it will take to exit D is exactly $2 \tau(x)$.]
4. Let $D=[0, L] \times[0, L]$, and b be some (bounded) vector function. Suppose u is a solution of the PDE $-\triangle u+b \cdot \nabla u=b_{1}$, with $u=0$ on ∂D. (Note: b_{1} is the first component of the vector b.) Find a constant c which only depends on L such that $u(x) \leqslant c$ for all $x \in D$. [This is a short, but tricky, application of the maximum principle.]
5. Sec. 7.1. 5,7

Assignment 14: Assigned Wed 04/25. Due Wed 05/02

1. Sec. 7.1. 6.
2. Sec. 7.2. 1.
3. Sec. 7.3. 1, 2

Sec. 7.4. 1, 3.
5. (Hopf lemma revisited) Here's a simpler way to do 6.4.12 than the online solution. (Consequently, you may not use the Hopf lemma for this proof.)
(a) Given $0<R_{0}<R_{1}$, let $A\left(R_{0}, R_{1}\right)$ be the annulus $\left\{x \in \mathbb{R}^{2}\left|R_{0}<|x|<\right.\right.$ $\left.R_{1}\right\}$. Given two constants c_{0} and c_{1}, find the solution to the $\mathrm{PDE}-\triangle v=0$ in $A\left(R_{0}, R_{1}\right)$, with $v=c_{0}$ on the inner boundary, and $v=c_{1}$ on the outer boundary.
(b) If $c_{0}<c_{1}$, verify that $\partial_{r} v\left(R_{1}, \theta\right)>0$.
(c) Let $B_{R}=\left\{x \in \mathbb{R}^{2}| | x \mid<R\right\}$. Suppose u is some function such that $-\triangle u \leqslant 0$ in B_{R}, and u attains a maximum at some point $x_{0} \in \partial B_{R}$. Suppose further $u(0)<u\left(x_{0}\right)$. Show that $\partial_{r} u\left(x_{0}\right)>0$. [Hint: Observe first that for some R_{0} small enough, $c_{0}=\max _{|x|=R_{0}}<u\left(x_{0}\right)$. Let $c_{1}=u\left(x_{0}\right)$ and use the maximum principle and previous subparts.]
(d) (Strong maximum principle) Suppose $D \subseteq \mathbb{R}^{2}$ is some domain, and u is a non-constant function with $-\triangle u \leqslant 0$ in D. Show that u can not attain an interior maximum.
(e) (Hopf lemma) Suppose $D \subseteq \mathbb{R}^{2}$ is a domain with a smooth boundary. Suppose u is a non-constant function satisfying $-\triangle u \leqslant 0$ in D, and is continuous up to the boundary of D. If u attains it's maximum at a point $x_{0} \in \partial D$, show that $\frac{\partial u}{\partial \hat{n}}>0$ at x_{0}, where \hat{n} is the outward pointing unit normal vector.

