Math 269 Syllabus and Lecture Schedule. Li1, Fri $22 / 10$.

Gautam Iyer, Spring 2012
L1, Wed $1 / 18$.
L2, Fri 1/20.
L3, Mon $1 / 23$.
L4, Wed $1 / 25$.
L5, Fri 1/27.
L6, Mon $1 / 30$.
L7, Wed $2 / 01$.

L8, Fri 2/03.

L9, Mon 02/06.

- (Sec. 1.4). Reminder about dot and cross products in \mathbb{R}^{n}.
- Distances, length, and angles.
- Cauchy Schwarz and triangle inequalities.
- (Sec. 1.5). Topology of \mathbb{R}^{n}.
- Open and closed sets.
- Interior, exterior, boundary.
- Sequences and convergence.
- Convergence of all coordinates \Longleftrightarrow convergence
- Uniqueness of limits.
- Limits of sums, scalar products of sequences.
- Limits of functions and continuity.
- Continuity of composition
- Sums, products, rational functions.
- Iterated limits (not in the book)
* $\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)$ need not equal $\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)$.
* Even if iterated limits both exist and are equal, the full limit L18, Mon 02/27. $\lim _{(a, y) \rightarrow(a, b)} f(x, y)$ need not exist.
* Even if the full limit exists, iterated limits need not exist (or L19, Wed 02/29. even be defined).
* If, however, the full limit exists, and $\lim _{x \rightarrow a} f(x, y)$ exists for all y close enough to b, then the iterated limit $\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)$ exists and equals the full limit.
* Consequently, if the full limit exists, and both iterated limits make sense, the two iterated limits must be equal.
- Series of vectors and matrices.
* Reminder of convergence tests.
* Cauchy sequences. Absolute convergence implies convergence.
$*|A|<1 \Longrightarrow \sum_{0}^{\infty} A^{n}=(I-A)^{-1}$.
* The set of all invertible matrices is open.
- (Sec. 1.6). Compactness

L10, Wed 02/08

- Definitions. Compact implies closed and bounded.
- Sup and Inf

L12, Mon 02/13
Monotone bounded sequences are convergent.

- Bolzano Weirstrauss: Any bounded sequence in \mathbb{R} has a convergent subsequence.
Closed and bounded in \mathbb{R}^{n} implies compact.
- A continuous image of a compact set is compact.
- Continuous functions on compact sets attain their bounds. (Extreme value theorem.)

L13, Wed 02/15. • Derivatives.

- Product, quotient, chain rules, etc.
- Derivatives at maxima.

L14, Fri 02/17. • Midterm.
L15, Mon 02/20. • (Sec. 1.6). (Lagrange) Mean value theorem

- Applications (e.g. increasing functions).

L16, Wed 02/22. - Cauchy mean value theorem (not in the book)

- L'Hospitals rule.
- (Sec. 1.7). Derivatives of functions of more than one variable.
- Partial derivatives
- Directional derivatives
- (Full) derivative, and Jacobian
- E.g. where the Jacobian is not the derivative.
- Extension to $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- (Sec. 1.8). $D(f g)_{a}(h)=\left(D f_{a}\right)(h) g(a)+f(a)\left(D g_{a}(h)\right)$.
* f differentiable iff $f(a+h)-f(a)=D f_{a}(h)+o(|h|)$.
* Proof of product rule.
- Chain rule, and proof.
- Examples and applications of the chain rule.
- Equality of mixed partials.
- Mean value theorem

L23, Mon 03/19.
L24, Wed 03/21.
L25, Fri 3/23.
L26, Mon 03/26.

- Midterm
- Maxima / minima
- Negative definite quadratic forms.

L27, Wed 03/28.

- Sufficient criteria for local maxima.

L28, Fri 03/30.

- Inverse function theorem.
- Assume $D f_{a}=I$ for simplicity.
- Step 1: Injectivity.

L35, Mon 04/16. - Examples and counter examples.

- Change of variables.
- Polar coordinates.
- Motivation: Determinants measure volumes of parallelepipeds.

L36, Wed 04/18. - E.g Computing $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.

- Volume integrals.
- Fubini's theorem and change of variables.
- Spherical coordinates.

L37, Mon 04/23. - Volumes of spheres.

- Line integrals.
- Motivation and examples (e.g. work done).
- Parametrization invariance.

