Math 26	9 Syllabus and Lecture Schedule.	L11, Fri 02/1	0. – Monotone bounded sequences are convergent.
	Gautam Iyer, Spring 2012		– Bolzano Weirstrauss: Any bounded sequence in $\mathbb R$ has a convergent subsequence.
L1, Wed 1/18.	 (Sec. 1.4). Reminder about dot and cross products in Rⁿ. Distances, length, and angles. Cauchy Schwarz and triangle inequalities. 	L12, Mon 02/	 /13 Closed and bounded in ℝⁿ implies compact. - A continuous image of a compact set is compact. - Continuous functions on compact sets attain their bounds. (Extreme value theorem.)
L2, Fri 1/20.	 (Sec. 1.5). Topology of ℝⁿ. – Open and closed sets. 	L13, Wed 02/	/15. • Derivatives.– Product, quotient, chain rules, etc.
L3, Mon 1/23.	– Interior, exterior, boundary.		– Derivatives at maxima.
		L14, Fri 02/1	7. • Midterm.
	 − Convergence of all coordinates ⇔ convergence. − Uniqueness of limits. 	L15, Mon 02/	 (Sec. 1.6). (Lagrange) Mean value theorem Applications (e.g. increasing functions).
L4, Wed 1/25.	– Limits of sums, scalar products of sequences.	L16, Wed 02/	/22. – Cauchy mean value theorem (not in the book)
L5, Fri 1/27.	• Limits of functions and continuity.		– L'Hospitals rule.
	– Continuity of composition		• (Sec. 1.7). Derivatives of functions of more than one variable.
L6, Mon 1/30.	– Sums, products, rational functions.		– Partial derivatives
L7, Wed 2/01.		L17, Fri 02/2	24. – Directional derivatives
	* $\lim_{x \to a} \lim_{y \to b} f(x, y)$ need not equal $\lim_{x \to a} \lim_{y \to b} f(x, y)$.		– (Full) derivative, and Jacobian
	* Even if iterated limits both exist and are equal, the full limit $\lim_{(x,y)\to(a,b)} f(x,y)$ need not exist.	L18, Mon 02/	/27. – E.g. where the Jacobian is not the derivative. – Extension to $f : \mathbb{R}^m \to \mathbb{R}^n$.
	* Even if the full limit exists, iterated limits need not exist (or even be defined).	L19, Wed 02/	$ 29 (Sec. 1.8). \ D(fg)_a(h) = (Df_a)(h)g(a) + f(a)(Dg_a(h)). $ $ * f \text{ differentiable iff } f(a+h) - f(a) = Df_a(h) + o(h). $
	* If, however, the full limit exists, and $\lim_{x \to a} f(x, y)$ exists for all		* Proof of product rule.
	y close enough to b, then the iterated limit $\lim_{y \to b} \lim_{x \to a} f(x, y)$	L20, Fri 03/0	2. – Chain rule, and proof.
		L21, Mon 03/	05. – Examples and applications of the chain rule.
	make sense, the two iterated limits must be equal.	L22, Wed 03/	
L8, Fri 2/03.	– Series of vectors and matrices.	L23, Mon 03/	
, ,	* Reminder of convergence tests.	,	21. – Taylors theorem.
	* Cauchy sequences. Absolute convergence implies conver-	L25, Fri 3/23	• Midterm.
	gence.	L26, Mon 03/	/26. • Maxima / minima
L9, Mon 02/06.	$* A < 1 \implies \sum_{n=1}^{\infty} A^n = (I - A)^{-1}.$		– Negative definite quadratic forms.
	* The set of all invertible matrices is open.	L27, Wed 03/	28. – Sufficient criteria for local maxima.
	• (Sec. 1.6). Compactness	L28, Fri 03/3	<i>e0.</i> • Inverse function theorem.
L10, Wed 02/08.	– Definitions. Compact implies closed and bounded.		– Assume $Df_a = I$ for simplicity.
	– Sup and Inf		– Step 1: Injectivity.

– Proof on a C^2 image of a square.

L40, Mon 04/30. • Stokes theorem * At an interior maximum, $D\varphi_x = 0$, forcing f(x) = y. – Proof for C^2 images of a square. - Step 3: Differentiability of the inverse. * Let $x, x_0 \in U_1, y = f(x), y_0 = f(x_0), S = Df_{x_0}, T = S^{-1}$. L41, Wed 05/02. • Divergence theorem $* g(y) - g(y_0) - T(y - y_0) = x - x_0 - T(f(x) - f(x_0)) =$ – Proof on a cube & applications. $f(y) = g(y_0) - f(y_0) - f(x_0) = f(x) - f(x_0) - S(x - x_0)$. $TF(x - x_0)$, where $F(x - x_0) = f(x) - f(x_0) - S(x - x_0)$. L42, Fri 05/04. • Winding number and fundamental theorem of algebra. * Differentiability of f and the inequality $|f(x) - f(x_0)| \ge$ $\frac{1}{2}|x-x_0|$ finishes the proof. L30, Wed 04/04. • (Sec. 2.10). Implicit function theorem. – Manifolds, regular values, etc.

L38, Wed 04/25. • Green's theorem

L39, Fri 04/27. • Surface integrals

– Proof on a square.

- Motivation, definition

– Form notation.

- L32, Mon 04/09. (Sec. 3.7). Lagrange multipliers
 - Motivation, statement (and one example)
- L33, Wed 04/11. Proof.

L29, Mon 04/02.

L31, Fri 04/06.

- L34, Fri 04/13. Integration
 - Double sums. Motivation of multiple integrals.
 - Mass, volume, etc.

* Put $\varphi(x) = f(x) - x$.

for x, x' close to a.

* Put $\varphi(x) = |f(x) - y|^2$.

- Step 2: Surjectivity.

* Arrange $|Df_x| < \frac{1}{2n}$ for x close to a.

* Arrange for φ to have an interior maximum.

* Use the mean value theorem to show $|f(x) - f(x')| \ge \frac{1}{2}|x - x'|$

- Computing integrals: One variable Fundamental Theorem of Calculus. Multi variable – Reduce to an iterated integral.
- Fubini's theorem
- Examples and counter examples. L35, Mon 04/16.
 - Change of variables.
 - Polar coordinates.
 - Motivation: Determinants measure volumes of parallelepipeds.

- E.g Computing $\int_{-\infty}^{\infty} e^{-x^2} dx$. L36, Wed 04/18.

- Volume integrals.
- Fubini's theorem and change of variables.
- Spherical coordinates.

L37, Mon 04/23. – Volumes of spheres.

- Line integrals.
 - Motivation and examples (e.g. work done).
 - Parametrization invariance.