21-269 Vector Analysis: Midterm 2.
 Mar $23^{\text {rd }}, 2012$

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 5 questions and 50 points.
- You may use without proof any result that has been proved in class or on the homework, provided you CLEARLY state the result you are using.
- Difficulty wise: $\# 1 \leqslant \# 2 \leqslant \# 3 \leqslant \# 4<\# 5$. The last inequality is strict.

10 1. Suppose $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function such that $2 \partial_{x} u-\partial_{y} u=1$. Let $g(t)=u(4 t,-2 t)$. Compute $\frac{d g}{d t}$. [Hint: Your final answer will simplify to a number.]

10 2. State whether true or false. No justification is required. A correct answer is worth 2 points, blank answer worth 1 point and incorrect answer worth 0 points.
(a) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at a. Then $\partial_{1} f$ and $\partial_{2} f$ necessarily exist and are continuous at a.
(b) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is such that both $\partial_{1} f$ and $\partial_{2} f$ exist at a. Then f is necessarily differentiable at a.
(c) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is such that both $\partial_{1} f$ and $\partial_{2} f$ exist at a. Then f is necessarily continuous at a.
(d) Suppose $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are such that the product $f g$ is differentiable at a. Then f and g are both differentiable at a, and further $D(f g)_{a}(v)=D f_{a}(v) g(a)+f(a) D g_{a}(v)$.
(e) Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two differentiable functions such that for all $x \in \mathbb{R}, f^{\prime}(x) \leqslant g^{\prime}(x)$. Then necessarily $f(x) \leqslant g(x)$ for all $x \in \mathbb{R}$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $a=(x, y) \in \mathbb{R}^{2}$ be some fixed point. Suppose for all $s, t \in \mathbb{R}$ we have

$$
f(x+s, y+t)-f(x, y)=2 x^{2} t+6 y s t+9 x t^{2}
$$

Is f differentiable at a ? If yes, what is $D f_{a}$?
4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function such that $f(1 / n)=0$ for all natural numbers n. Suppose further $\lim _{x \rightarrow 0} f^{\prime}(x)$ exists. Must $\lim _{x \rightarrow 0} f^{\prime}(x)=0$? Provide a proof, or a counter example.
5. Let $C \subseteq \mathbb{R}$ be compact. Let $D=\{x+y \mid x, y \in C\}$. Is D compact? Prove or provide a counter example.

