21-269 Vector Analysis: Midterm 2.

Mar 23^{rd} , 2012

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 5 questions and 50 points.
- You may use without proof any result that has been proved in class or on the homework, provided you **CLEARLY** state the result you are using.
- Difficulty wise: $\#1 \leq \#2 \leq \#3 \leq \#4 < \#5$. The last inequality is strict.
- 10 1. Suppose $u : \mathbb{R}^2 \to \mathbb{R}$ is a differentiable function such that $2\partial_x u \partial_y u = 1$. Let g(t) = u(4t, -2t). Compute $\frac{dg}{dt}$. [HINT: Your final answer will simplify to a number.]
- 10 2. State whether true or false. No justification is required. A correct answer is worth 2 points, blank answer worth 1 point and incorrect answer worth 0 points.
 - (a) Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at a. Then $\partial_1 f$ and $\partial_2 f$ necessarily exist and are continuous at a.
 - (b) Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is such that both $\partial_1 f$ and $\partial_2 f$ exist at a. Then f is necessarily differentiable at a.
 - (c) Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is such that both $\partial_1 f$ and $\partial_2 f$ exist at a. Then f is necessarily continuous at a.
 - (d) Suppose $f, g : \mathbb{R}^2 \to \mathbb{R}$ are such that the product fg is differentiable at a. Then f and g are both differentiable at a, and further $D(fg)_a(v) = Df_a(v)g(a) + f(a)Dg_a(v)$.
 - (e) Suppose $f, g: \mathbb{R} \to \mathbb{R}$ be two differentiable functions such that for all $x \in \mathbb{R}$, $f'(x) \leq g'(x)$. Then necessarily $f(x) \leq g(x)$ for all $x \in \mathbb{R}$.
- 10 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$, and $a = (x, y) \in \mathbb{R}^2$ be some fixed point. Suppose for all $s, t \in \mathbb{R}$ we have

$$f(x+s, y+t) - f(x, y) = 2x^{2}t + 6yst + 9xt^{2}.$$

Is f differentiable at a? If yes, what is Df_a ?

- 10 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f(1/n) = 0 for all natural numbers n. Suppose further $\lim_{x\to 0} f'(x)$ exists. Must $\lim_{x\to 0} f'(x) = 0$? Provide a proof, or a counter example.
- 10 5. Let $C \subseteq \mathbb{R}$ be compact. Let $D = \{x + y \mid x, y \in C\}$. Is D compact? Prove or provide a counter example.