21-269 Vector Analysis: Midterm 1.

Feb $17^{\text {th }}, 2012$

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 5 questions and 50 points.
- You may use without proof any result that has been proved in class or on the homework, provided you CLEARLY state the result you are using.
- Difficulty wise: $\# 1 \leqslant \# 2 \leqslant \# 3 \leqslant \# 4<\# 5$. The last inequality is strict.

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{x_{1}^{2}}{x_{1}+x_{2}} & \text { if } x_{1}+x_{2} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Does $\lim _{x \rightarrow 0} f(x)$ exist? Prove your answer. [Here $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$.]
10 2. Let S, T be two non-empty subsets of \mathbb{R}, such that $\forall s \in S, t \in T$ we have $s \leqslant t$. Show that $\sup (S) \leqslant \inf (T)$.

10 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sqrt{|x|}$. Give a direct $\varepsilon-\delta$ proof that $\lim _{x \rightarrow 1} f(x)=1$.
10 4. Suppose $U \subseteq \mathbb{R}^{2}$ is open. For a given $x_{0} \in \mathbb{R}$, define $V \subseteq \mathbb{R}$ by

$$
V=\left\{y \in \mathbb{R} \mid\left(x_{0}, y\right) \in U\right\} .
$$

Show that $V \subseteq \mathbb{R}$ is open.
10 5. If $S \subseteq \mathbb{R}^{2}$ is both open and closed show that $S=\mathbb{R}^{2}$ or $S=\emptyset$. [You may use the one dimensional version you proved on your homework.]

