21-269 Vector Analysis: Midterm 1.

Feb $17^{\rm th},\,2012$

- This is a closed book test. No calculators or computational aids are allowed.
- You have 50 mins. The exam has a total of 5 questions and 50 points.
- You may use without proof any result that has been proved in class or on the homework, provided you **CLEARLY** state the result you are using.
- Difficulty wise: $\#1 \leq \#2 \leq \#3 \leq \#4 < \#5$. The last inequality is strict.

10 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{x_1^2}{x_1 + x_2} & \text{if } x_1 + x_2 \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

Does $\lim_{x \to 0} f(x)$ exist? Prove your answer. [Here $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$.]

- 10 2. Let S, T be two non-empty subsets of \mathbb{R} , such that $\forall s \in S, t \in T$ we have $s \leq t$. Show that $\sup(S) \leq \inf(T)$.
- 10 3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sqrt{|x|}$. Give a direct $\varepsilon \cdot \delta$ proof that $\lim_{x \to 1} f(x) = 1$.
- 10 4. Suppose $U \subseteq \mathbb{R}^2$ is open. For a given $x_0 \in \mathbb{R}$, define $V \subseteq \mathbb{R}$ by

$$V = \{ y \in \mathbb{R} \mid (x_0, y) \in U \}.$$

Show that $V \subseteq \mathbb{R}$ is open.

10 5. If $S \subseteq \mathbb{R}^2$ is *both* open and closed show that $S = \mathbb{R}^2$ or $S = \emptyset$. [You may use the one dimensional version you proved on your homework.]