
Supplement: Lagrange multipliers.

Recall our setup from class: f : Rn → R is C1, and g : Rn → Rm is C1. The
function f is your “cost”, which you want to maximise (or minimise) subject to the
constraint g = 0.

The usual strategy is to construct a function

H(x, λ) = f(x) + λg(x)

and observe that critical points of H must satisfy the constraint g = 0. Here
λ = (λ1λ2 . . . λn) is a 1× n matrix (n being the number of coordinates g has, which
is the same as the “number of constraints”).

The typical situation (see your homework) will leave you with finitely many
critical points of H, which you can usually deal with from other considerations.
(There also exists a second derivative test involving the augmentation of the Hessian,
which is described in your book and required for the last problem.)

Unfortunately, the observation that critical points of H satisfy the constraint
g does not rule out the possibility of the existence of a constrained maximum of
f which is not a critical point of H! (You saw an example of this in the section,
and there is one on your homework.) However, if 0 is a regular value of g, then
any constrained maximum of f must in fact correspond to a critical point of H. I
proved this for n = 2, m = 1 in class. But the underlying idea is the same in higher
dimensions, provided you know the Rank Nullity theorem. Since there are enough
other problems to put on your homework this week, I write it up below.

Proposition 1. Suppose 0 is a regular value of g, and a constrained (local) maxi-
mum of f given g = 0 is attained at the point x0. Then there exists an 1×m matrix
λ0 such that

Dfx0
+ λ0Dgx0

= 0.

Consequently (x0, λ0) is a critical point of H.

Proof. Let x = (y, z), where y ∈ Rn−m and z ∈ Rm. Without loss of generality, we
assume that the last m columns of the matrix Dgx0

are linearly independent. Thus,
by the implicit function theorem there exists ε, δ and a C1 function h : Rn−m → Rm

such that
{g = 0} ∩B(x0, ε) = {(y, h(z))

∣∣ y ∈ B(y0, ε)}.

Now, f attains a constrained (local) maximum at x0 if and only if the function
ϕ : Rn−m → Rm defined by ϕ(y) = f(y, h(y)) has a critical point at y0. Thus

0 = Dϕy0
= Dfx0

(
I

Dhy0

)
.

Equivalently, this means the vector ∇f is in the kernel of the matrix M defined by

M
def
=
(
I (Dhy0

)∗
)
.

On the other hand, differentiating the identity g(y, h(y)) = 0, we see

Dgx0

(
I

Dhy0

)
= 0.

Equivalently, each of the vectors ∇g1(x0), . . . , ∇gm(x0) are in the kernel of the
matrix M .

Now let’s count dimensions. Note that M is an (n − m) × n matrix, and the
first n−m columns are the same as that of the (n−m)× (n−m) identity matrix.
This forces rank(M) = n − m. So by the Rank-Nullity theorem, dim(ker(M)) =
n− rank(M) = m.

Observe that the m vectors ∇g1(x0), . . . , ∇gm(x0) are all linearly independent
(because rankDgx0

= m). Since they’re all in the kernel of M , a subspace of dimen-
sion exactly m, these vectors must form a basis of ker(M). Thus ∇fx0 (which know
is in ker(M)) must be a linear combination of these basis vectors. So ∃λ1, . . . λm ∈ R
such that

∇fx0
=

m∑
1

λi∇gx0
.

Taking the transpose finishes the proof.


