
Assignment 14: Assigned Wed 04/25. Due Wed 05/02

1. (a) Let Γ be a (piecewise) C1 closed curve (oriented counter clockwise) in the
plane, enclosing an open set U . Show that 1

2

∮
Γ
−y dx + x dy = Area(U).

[Notation: Given a function F =
(
P
Q

)
, we define

∫
Γ P dx + Qdy to be the line integral∫

Γ F · dl.]

(b) Let P be a polygon (not necessarily convex) in R2. Suppose the vertices
of P (ordered counter clockwise) have coordinates (x1, y1), . . . , (xN , yN ).
Show that

Area(P ) =
(x1y2 − x2y1) + (x2y3 − x3y2) + · · ·+ (xNy1 − x1yN )

2
.

[This is a standard result from coordinate geometry. The ‘pure geometry’ proof, however

is a little tricky. If you knew that your polygon was convex, you could divide it into

triangles based at the (x1, y1) and prove this formula quickly. If your polygon is not

convex, then doing this won’t divide it up into disjoint triangles! So this trick (at first

sight) won’t work. But the Green’s theorem line integral trick works just fine.]

2. (a) Let U, V ⊆ R2 be open, ϕ : U → V be C2, and G : V → R2 be C1. Define
F : U → R2 by F (x) = (Dϕx)∗(G ◦ ϕ(x)). Show that

∂2F1 − ∂1F2 = [(∂2G1 − ∂1G2) ◦ ϕ] det(Dϕ)

[This will conclude the proof from class for Greens theorem, when the domain is a C2

image of a rectangle.]

(b) Suppose instead V ⊆ R3, and G : V → R3, then show

∂2F1 − ∂1F2 = [(∇×G) ◦ ϕ] · (∂1ϕ× ∂2ϕ)

(c) Prove Stokes theorem when the surface is the image of a square. Explicitly,
suppose S ⊆ R3 is a surface who’s boundary is the closed curve Γ. Suppose
further there exists an injective (piece-wise) C2 function ϕ : R2 → R3 which
parametrizes the surface S preserving orientation: Namely, this means that
if R = (0, 1) × (0, 1) is the unit square in R2, then we assume ϕ(R) = S,
and ϕ(∂R) = Γ. Further, if γ(t) traverses ∂R counter-clockwise, then
ϕ ◦ γ traverses Γ counter clockwise and (n̂ ◦ ϕ) · ∂1ϕ × ∂2ϕ > 0. (Here
n̂ is the (given) normal vector to the surface S). Show that

∮
Γ
G · dl =∫

S
(∇×G) · n̂ dS.

3. The fundamental theorem for line integrals says that the line integral of a gra-
dient only depends on the two end points of the curve. We address the converse
here.

(a) Let F : R2 → R2 be a continuous function. Show that the line integral of
F over any curve only depends on the two end points of the curve if and
only if the line integral of F over any closed curve is 0.

(b) Let F : R2 → R2 be a continuous function so that the line integral of F
over any curve only depends on the two end points of the curve. Show

that there exists a C1 function V : R2 → R such that F = ∇V . [Hint:

Let V (x, y) =
∫ (x,y)
(0,0)

F · dl, where the integral is taken over any curve joining (0, 0) and

(x, y). Note that this gives a well defined function V by our assumption on F . Now

choose the curve Γ to start from (0, 0) go straight (vertically) to (0, y) and then straight

(horizontally) to (x, y). Using this, show ∂xV = F1.]

(c) Does the previous part work if F : R3 → R3 instead? Justify.

4. We know from an old homework that all gradients have 0 curl (i.e. ∇×∇ϕ = 0).
We claim that the converse is true, provided your domain is nice.

(a) Suppose F : R3 → R3 is a C1 function such that ∇ × F = 0, show that
there exists a C1 function V such that F = ∇V . [Hint: Problem 3?]

(b) Compute
∮

Γ
−y

x2+y2 dx+ x
x2+y2 dy, where Γ is a circle with center 0.

(c) Let U = R3−{(x, y, z) | x = y = 0}. Find a C∞ function F : U → R3 such
that ∇ × F = 0, but there does not exist V ∈ C1(U) such that F = ∇V .
[Hint: Part (b)?]

5. (Winding number) This last question constructs the winding number of a curve.
Let Γ be a (piecewise) C1 closed curve in R2 −{0} with parametrization γ. We
define the winding number of Γ to be

w(Γ) =
1

2π

∮
Γ

F · dl, where F (x, y) =
1

x2 + y2

(
−y
x

)
We claim that this line integral exactly counts the number of times the curve Γ
winds around the origin. One thing that might tip you off to this fact is that
F = ∇ tan−1(y/x), when x 6= 0, and so the line integral

∫
∆
F · dl over a curve

joining points P and Q should morally be tan−1(P ) − tan−1(Q), the ‘angle’
swept out by the curve.

This is correct, provided x 6= 0! If the curve crosses the y axis, then our fun-
damental theorem doesn’t apply, and we need to look elsewhere for a rigorous
treatment.

(a) (Independent of the other subparts) Suppose the curve Γ is the boundary
of an open set U that does not contain the origin. We should intuitively
expect that w(Γ) = 0. Prove this. [Hint: Greens theorem. . . ]

(b) Let θ(t) =

∫ t

0

F (γ(t)) · γ′(t) dt. Show that

d

dt

[
|γ|
(

cos θ
sin θ

)
· F (γ)

]
= 0 =

d

dt

[
|γ|
(
− sin θ
cos θ

)
· F (γ)

]
(c) Show that w(Γ) is an integer for any closed curve Γ. [This follows quickly from

the previous subpart. There are many deep (and sometimes surprising) applications of

the “simple” fact that the winding number is an integer. One example is the Fundamental

Theorem of Algebra, which I will do in class later. Another, is the Jordan Curve theorem

which I won’t have time to do.]
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