Assignment 13: Assigned Wed 04/18. Due Wed 04/25

- 1. Sec. 4.5. 3, 15
- 2. Sec. 4.10. 4, 8
- 3. Let $D \subseteq \mathbb{R}^2$ be the region bounded by the lines y = x, $y = x + 2\pi$ and x = 0. Let $f(x, y) = \sin(y - x)$.
 - (a) Does Fubini's theorem apply when computing $\iint_D f(x, y) dx dy$?
 - (b) Verify both the iterated integrals associated with $\iint_D f(x, y) dx dy$ are finite, but not equal.
- 4. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be C^1 , and suppose for simplicity $\varphi(0,0) = (0,0)$. For $\varepsilon > 0$, let P_{ε} be the parallelogram with vertices (0,0), $\varphi(\varepsilon,0)$, $\varphi(0,\varepsilon)$ and $\varphi(\varepsilon,0) + \varphi(0,\varepsilon)$. Compute $\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon^2} \operatorname{Area}(P_{\varepsilon})$. [The real reason behind the change of variable formula is that $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \operatorname{Area}(\varphi(S_{\varepsilon})) = |\det(D\varphi)|$, where S_{ε} is the square with diagonal points (0,0) and $(\varepsilon,\varepsilon)$. This, however, is a little harder to see, mainly because $\varphi(S_{\varepsilon})$ need not have a "nice shape". If we approximate $\varphi(S_{\varepsilon})$ by a parallelogram then computing the limit can be done directly, and is exactly the content of this question.]
- 5. (a) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be linear, and P be the parallelogram with sides $T(e_1)$ and $T(e_2)$. Find a formula for the area of P in terms of the matrix of T.
 - (b) Let $U \subseteq \mathbb{R}^2$ be open, and $\varphi : U \to \mathbb{R}^3$ be C^1 and injective. Then $S \stackrel{\text{def}}{=} \varphi(U)$, the image of U under φ is a surface in \mathbb{R}^3 . Guess a formula for the area of S in terms of φ . [HINT: Use the same intuition from change of variable: If P is a really small square in U, what is the area of $\varphi(P)$? The previous subpart helps.]
 - (c) Let $f: U \to \mathbb{R}$ be C^1 . Use your formula from the previous subpart to show that

Area{
$$(x, y, f(x, y)) \mid (x, y) \in U$$
} = $\iint_U \sqrt{1 + (\partial_x f)^2 + (\partial_y f)^2} \, dx \, dy$.

- (d) Using your formula, to compute the surface area of a sphere of radius r.
- 6. Let $f : [a, b] \to (0, \infty)$ be differentiable, and $S \subseteq \mathbb{R}^3$ be the surface formed by rotating the graph of f about the *x*-axis. Explicitly,

$$S = \{(x, y, z) \mid x \in [a, b] \text{ and } y^2 + z^2 = f(x)^2\}.$$

Show that that the area of S is $\int_a^b 2\pi f(x)\sqrt{1+f'(x)^2} \, dx$. [You might have already seen this formula from one variable calculus. You can derive it here using Fubini's theorem and the surface area formula from the previous question.]