Assignment 13: Assigned Wed 04/18. Due Wed 04/25

1. Sec. 4.5. 3, 15
2. Sec. 4.10. 4, 8
3. Let $D \subseteq \mathbb{R}^{2}$ be the region bounded by the lines $y=x, y=x+2 \pi$ and $x=0$. Let $f(x, y)=\sin (y-x)$.
(a) Does Fubini's theorem apply when computing $\iint_{D} f(x, y) d x d y$?
(b) Verify both the iterated integrals associated with $\iint_{D} f(x, y) d x d y$ are finite, but not equal.
4. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be C^{1}, and suppose for simplicity $\varphi(0,0)=(0,0)$. For $\varepsilon>0$, let P_{ε} be the parallelogram with vertices $(0,0), \varphi(\varepsilon, 0), \varphi(0, \varepsilon)$ and $\varphi(\varepsilon, 0)+\varphi(0, \varepsilon)$. Compute $\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\varepsilon^{2}} \operatorname{Area}\left(P_{\varepsilon}\right)$. [The real reason behind the change of variable formula is that $\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \operatorname{Area}\left(\varphi\left(S_{\varepsilon}\right)\right)=|\operatorname{det}(D \varphi)|$, where S_{ε} is the square with diagonal points $(0,0)$ and $(\varepsilon, \varepsilon)$. This, however, is a little harder to see, mainly because $\varphi\left(S_{\varepsilon}\right)$ need not have a "nice shape". If we approximate $\varphi\left(S_{\varepsilon}\right)$ by a parallelogram then computing the limit can be done directly, and is exactly the content of this question.]
5. (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear, and P be the parallelogram with sides $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$. Find a formula for the area of P in terms of the matrix of T.
(b) Let $U \subseteq \mathbb{R}^{2}$ be open, and $\varphi: U \rightarrow \mathbb{R}^{3}$ be C^{1} and injective. Then $S \stackrel{\text { def }}{=} \varphi(U)$, the image of U under φ is a surface in \mathbb{R}^{3}. Guess a formula for the area of S in terms of φ. [Hint: Use the same intuition from change of variable: If P is a really small square in U, what is the area of $\varphi(P)$? The previous subpart helps.]
(c) Let $f: U \rightarrow \mathbb{R}$ be C^{1}. Use your formula from the previous subpart to show that

$$
\text { Area }\{(x, y, f(x, y)) \mid(x, y) \in U\}=\iint_{U} \sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}} d x d y
$$

(d) Using your formula, to compute the surface area of a sphere of radius r.
6. Let $f:[a, b] \rightarrow(0, \infty)$ be differentiable, and $S \subseteq \mathbb{R}^{3}$ be the surface formed by rotating the graph of f about the x-axis. Explicitly,

$$
S=\left\{(x, y, z) \mid x \in[a, b] \text { and } y^{2}+z^{2}=f(x)^{2}\right\} .
$$

Show that that the area of S is $\int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x$. [You might have already seen this formula from one variable calculus. You can derive it here using Fubini's theorem and the surface area formula from the previous question.]

