Assignment 11: Assigned Wed 04/04. Due Wed 04/11

1. Sec. 2.10. 2, 5, $8,9$.
2. (a) In class we only proved the inverse function theorem assuming $D f_{a}=I$. Prove the theorem if $D f_{a}$ is any general (invertible) linear transformation. [Don't reinvent the wheel. Reduce it the case we already did.]
(b) In class we proved that the inverse function g is differentiable. Prove that g is actually C^{1}.

We've seen the two dimensional version of the implicit function theorem in class. The higher dimensional analogue is a little more messy to write down, but contains essentially the same idea.
3. Let $U \subseteq \mathbb{R}^{m}, V \subseteq \mathbb{R}^{n}$ be open, and suppose $f: U \times V \rightarrow \mathbb{R}^{n}$ is C^{1}. Let $x_{0} \in U$, $y_{0} \in V$ and $a=f\left(x_{0}, y_{0}\right)$. Suppose that the minor obtained by taking all the rows and the last n columns of $D f_{\left(x_{0}, y_{0}\right)}$ is an invertible matrix. Show that there exists $\varepsilon, \delta>0$ and a C^{1} function $g: B_{\delta}\left(x_{0}\right) \rightarrow V$ such that

$$
\{f=a\} \cap B_{\varepsilon}\left(x_{0}, y_{0}\right)=\left\{(x, g(x))| | x-x_{0} \mid<\varepsilon\right\} .
$$

[As we had in class, this shows that $y=g(x)$ is locally the unique solution of the equation $f(x, y)=a$.]

We "un-rigorously" proved a long time ago that the gradient of a function is perpendicular to level sets. With the implicit function theorem, we can make this all rigorous now. The next two problems do this.
4. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a C^{1} function, and $S=\left\{(x, f(x)) \mid x \in \mathbb{R}^{n}\right\}$ be the graph of f. Let $x_{0} \in \mathbb{R}^{m}$, and $s_{0}=\left(x_{0}, f\left(x_{0}\right)\right) \in S$. We define the tangent space of S at the point S_{0} by

$$
T S_{s_{0}}=\left\{\left(x_{0}+h, f\left(x_{0}\right)+D f_{x_{0}}(h)\right) \mid h \in \mathbb{R}^{m}\right\}
$$

(a) If $x_{0}=f\left(x_{0}\right)=0$, show that $T S_{s_{0}}$ is a subspace of \mathbb{R}^{m+n}. What is the dimension of $T S_{s_{0}}$? [If x_{0} or $f\left(x_{0}\right)$ are non-zero, then $T S_{s_{0}}$ is itself not a subspace, however it is a translate of a subspace. Namely, if you shift your origin to the point ($x_{0}, f\left(x_{0}\right)$), then $T S_{s_{0}}$ becomes a subspace.]
(b) As an example, let $f(x, y)=x^{2}+2 x y,\left(x_{0}, y_{0}\right)=(1,0)$. Find a subspace $V \subseteq \mathbb{R}^{3}$, such that $T S_{s_{0}}=(1,0,1)+V$. Also find a basis of V.
5. Let $f: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be $C^{1}, s_{0}=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n}, f\left(x_{0}, y_{0}\right)=a$, and the last n columns of $D f_{x_{0}, y_{0}}$ form an invertible matrix. Let S be the level set $\{f=a\}$. By the implicit function theorem, S is locally graph $\left\{(x, g(x)) \mid x \in B_{\delta}\left(x_{0}\right)\right\}$ for some C^{1} function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Since S is locally a graph of a C^{1} function, the previous problem defines the tangent space $T S_{s_{0}}$ at the point s_{0}. Show that for all $i \in\{1, \ldots, n\}$, the vector $\nabla f_{i}\left(x_{0}, y_{0}\right)$ is perpendicular to $T S_{s_{0}}$. [Hint: Reduce this to showing that for all $h \in \mathbb{R}^{m}$, you have $\left[\nabla f_{i}\left(x_{0}, y_{0}\right)\right] \cdot\binom{h}{D s_{s_{0}}(h)}=0$. Some trickery with the chain rule should help you now.]

Assignment 12: Assigned Wed 04/11. Due Wed 04/18

1. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1}, and $a \in \mathbb{R}^{m}$ be a regular value of g. Assume further that the level set $\{g=a\}$ is non-empty. Show that there exists $\varepsilon>0$ such for all $b \in B(a, \varepsilon)$, the level set $\{g=b\}$ is also non-empty, and b is a regular value of g.
2. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is C^{2}. We say the critical point $x_{0} \in \mathbb{R}^{m}$ is non-degenerate if the Hessian at x_{0} is invertible. We say the critical point x_{0} is isolated if there exists a small neighbourhood of x_{0} where f has no other critical points.
(a) Show that any non-degenerate critical point of f is isolated.
(b) Give an example of a function with an isolated critical point which is not non-degenerate.
3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1}. Suppose 0 is a regular value of g, and the level set $\{g=0\}$ is non-empty and bounded.
(a) Let $H(x, \lambda)=f(x)+\lambda \cdot g(x)$, for $\lambda \in \mathbb{R}^{m}$. If all critical points of H are isolated, show that H can have at most finitely many critical points.
(b) Let $x_{1} \ldots x_{N}$ be all the critical points of H above, ordered so that $f\left(x_{1}\right) \leqslant$ $\cdots \leqslant f\left(x_{N}\right)$. Show that the (global) constrained maximum of f given the constraint $g=0$ is $f\left(x_{N}\right)$, and the (global) constrained minimum of f given $g=0$ is $f\left(x_{1}\right)$. [This gives an easily checkable criterion to find the global constrained maximum and minimum.]
4. Let $f(x, y)=y$, and $g(x, y)=y-e^{-x^{2}}$.
(a) Let $H(x, y, \lambda)=f(x, y)+\lambda g(x, y)$. Compute the critical points of H.
(b) Show that f attains a constrained maximum given the constraint $g=0$, and compute the (global, constrained) maximum value.
(c) Show however that f does not attain a (global) constrained minimum value given the constraint $g=0$. Why this does not contradict question 3 ?
5. Sec. 3.7. 1, 5, 13, 18.
