Assignment 8: Assigned Wed 03/07. Due Wed 03/21

- 1. Prove the chain rule. [In class, my proof was very "imprecise". I often said "when h is small enough", etc. Replace all these with precise ε - δ statements, and write a complete rigorous proof.]
- 2. Sec. 1.8. 2, 10, 12.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable, $c \in \mathbb{R}$ be given and and define

$$u(x,t) = \int_0^t \left(\int_{x-c(t-s)}^{x+c(t-s)} f(y,s) \, dy \right) \, ds$$

Compute $\partial_t \partial_t u - c^2 \partial_x \partial_x u$.

Assignment 9: Assigned Wed 03/21. Due Wed 03/28

- 1. Sec. 1.9. 1.
- 2. Sec. 3.3. 9.
- 3. Sec. 3.4. 1.
- 4. In the last homework, we saw the gradient, divergence and curl operators. Notice we can combine these operators to form a few second order operators: e.g. $\nabla \cdot (\nabla f)$. There are of course 9 combinations you can formally write down, but not all of them make sense.
 - (a) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a C^2 function. Which of the 9 second order combinations of divergence, gradient and curl make sense?
 - (b) Of the combinations that make sense, exactly one must *always* be 0. Which one?
 - (c) Now let $u : \mathbb{R}^3 \to \mathbb{R}^3$ be a C^2 function. Which of the 9 second order combinations of divergence, gradient and curl make sense?
 - (d) Again, of the combinations that make sense, exactly one must *always* be 0. Which one?
 - (e) Let $u : \mathbb{R}^3 \to \mathbb{R}^3$ be a C^2 function. Show that $\nabla \times \nabla \times u = -\Delta u + \nabla \nabla \cdot u$. Here Δu is called the Laplacian of u, and defined to be the column vector $(\nabla \cdot \nabla u_1, \nabla \cdot \nabla u_2, \nabla \cdot \nabla u_3)^*$. [In fact, for a scalar function $f : \mathbb{R}^3 \to \mathbb{R}$, the Laplacian of f (denoted by the same symbol Δf) is defined to be $\nabla \cdot \nabla f$.]

Assignment 10: Assigned Wed 03/28. Due Wed 04/04

1. Fill in the following detail from the proof from Wed 03/28: How small should $\varepsilon > 0$ be so that the condition $|\partial_i \partial_j f(\xi) - \partial_i \partial_j f(a)| \leq \varepsilon$ for all $i, j \in \{1, \ldots, n\}$ will guarantee

$$\left|\sum_{i=1}^{n}\sum_{j=1}^{n}\partial_{i}\partial_{j}f(\xi) - \partial_{i}\partial_{j}f(a)(x_{i} - a_{i})(x_{j} - a_{j})\right| \leq \frac{c}{2}|x - a|^{2}?$$

- 2. Suppose $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$.
 - (a) Show that A is positive definite and non-degenerate if and only if a > 0and $ac - b^2 > 0$.
 - (b) What is the analogous condition for A to be negative definite and nondegenerate? [Warning: Don't blindly change signs!]
 - (c) Using the previous two subparts, state sufficient conditions for a function $f : \mathbb{R}^2 \to \mathbb{R}$ to attain a (strict) local maximum at a.
 - (d) Guess a condition (using determinants of minors) that will guarantee an $n \times n$ symmetric matrix is positive definite. What is the condition guarantying the matrix is negative definite? (No proofs are required for this part.)
- 3. Let $f: U \to \mathbb{R}$ be C^2 , and $a \in U$. Suppose $Df_a = 0$, and the Hessian $H \stackrel{\text{def}}{=} (\partial_i \partial_j f(a))$ has at least one strictly positive and at least on strictly negative eigenvalue. Show that f has a saddle at a.
- 4. Sec. 3.6. 2, 7, 8.
- 5. Let A be an $n \times n$ matrix, not necessarily symmetric, such that for all $v \in \mathbb{R}^n$ with $v \neq 0$, we have $(Av) \cdot v < 0$. Show that there exists c > 0 such that for all $v \in \mathbb{R}^n$, we have $(Av) \cdot v \leq -c|v|^2$. [HINT: This doesn't involve any linear algebra! I claim it can be done using a 'clever' argument using the extreme value theorem.]
- 6. (Optional, hard) Find a twice differentiable function with a critical point at a who's Hessian at a is symmetric, negative definite and non-degenerate, however f does not attain a local maximum at a.