Assignment 8: Assigned Wed 03/07. Due Wed 03/21

1. Prove the chain rule. [In class, my proof was very "imprecise". I often said "when h is small enough", etc. Replace all these with precise $\varepsilon-\delta$ statements, and write a complete rigorous proof.]
2. Sec. 1.8. 2, 10, 12.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable, $c \in \mathbb{R}$ be given andand define

$$
u(x, t)=\int_{0}^{t}\left(\int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y\right) d s
$$

Compute $\partial_{t} \partial_{t} u-c^{2} \partial_{x} \partial_{x} u$.

Assignment 9: Assigned Wed 03/21. Due Wed 03/28

1. Sec. 1.9. 1.
2. Sec. 3.3. 9.
3. Sec. 3.4. 1.
4. In the last homework, we saw the gradient, divergence and curl operators. Notice we can combine these operators to form a few second order operators: e.g. $\nabla \cdot(\nabla f)$. There are of course 9 combinations you can formally write down, but not all of them make sense.
(a) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{2} function. Which of the 9 second order combinations of divergence, gradient and curl make sense?
(b) Of the combinations that make sense, exactly one must always be 0 . Which one?
(c) Now let $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{2} function. Which of the 9 second order combinations of divergence, gradient and curl make sense?
(d) Again, of the combinations that make sense, exactly one must always be 0 . Which one?
(e) Let $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{2} function. Show that $\nabla \times \nabla \times u=-\triangle u+\nabla \nabla \cdot u$. Here Δu is called the Laplacian of u, and defined to be the column vector $\left(\nabla \cdot \nabla u_{1}, \nabla \cdot \nabla u_{2}, \nabla \cdot \nabla u_{3}\right)^{*}$. [In fact, for a scalar function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the Laplacian of f (denoted by the same symbol Δf) is defined to be $\nabla \cdot \nabla f$.]

Assignment 10: Assigned Wed 03/28. Due Wed 04/04

1. Fill in the following detail from the proof from Wed $03 / 28$: How small should $\varepsilon>0$ be so that the condition $\left|\partial_{i} \partial_{j} f(\xi)-\partial_{i} \partial_{j} f(a)\right| \leqslant \varepsilon$ for all $i, j \in\{1, \ldots, n\}$ will guarantee

$$
\left|\sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{i} \partial_{j} f(\xi)-\partial_{i} \partial_{j} f(a)\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)\right| \leqslant \frac{c}{2}|x-a|^{2} ?
$$

2. Suppose $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$.
(a) Show that A is positive definite and non-degenerate if and only if $a>0$ and $a c-b^{2}>0$.
(b) What is the analogous condition for A to be negative definite and nondegenerate? [Warning: Don't blindly change signs!]
(c) Using the previous two subparts, state sufficient conditions for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to attain a (strict) local maximum at a.
(d) Guess a condition (using determinants of minors) that will guarantee an $n \times$ n symmetric matrix is positive definite. What is the condition guarantying the matrix is negative definite? (No proofs are required for this part.)
3. Let $f: U \rightarrow \mathbb{R}$ be C^{2}, and $a \in U$. Suppose $D f_{a}=0$, and the Hessian $H \stackrel{\text { def }}{=}$ $\left(\partial_{i} \partial_{j} f(a)\right)$ has at least one strictly positive and at least on strictly negative eigenvalue. Show that f has a saddle at a.
4. Sec. 3.6. 2, 7, 8 .
5. Let A be an $n \times n$ matrix, not necessarily symmetric, such that for all $v \in \mathbb{R}^{n}$ with $v \neq 0$, we have $(A v) \cdot v<0$. Show that there exists $c>0$ such that for all $v \in \mathbb{R}^{n}$, we have $(A v) \cdot v \leqslant-c|v|^{2}$. [Hint: This doesn't involve any linear algebra! I claim it can be done using a 'clever' argument using the extreme value theorem.]
6. (Optional, hard) Find a twice differentiable function with a critical point at a who's Hessian at a is symmetric, negative definite and non-degenerate, however f does not attain a local maximum at a.
