Assignment 6: Assigned Wed 02/22. Due Wed 02/29

- 1. Sec. 1.6. 7. [WARNING: The intermediate value theorem does NOT apply to f', as f' need not be continuous.]
- 2. Suppose two (oddly shaped) pancakes are placed on a table. Show that with one straight cut of a knife you can cut both of them in half simultaneously. [It turns out that if you place three, oddly shaped, burgers in \mathbb{R}^3 , you can always cut each of them in half with one straight cut of a knife. This however requires some algebraic topology to prove...]
- 3. If f is differentiable at a, then we know that $f(x) \approx f(a) + (x-a)f'(a)$. The function f(a) + (x-a)f'(a) is a "first order" approximation of f. The point of this question is to find higher order approximations of f, provided the higher order derivatives of f exist.

Let $a \in \mathbb{R}$ be fixed, and define $P_{n,f}$, the n^{th} Taylor approximation of f to be the polynomial $P_{n,f}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

- (a) For $n \ge 1$, show that $P'_{n,f}(x) = P_{n-1,f'}(x)$.
- (b) (Taylor's theorem.) Suppose f is n times differentiable at a. Show that $\lim_{x \to a} \frac{f(x) P_{n,f}(x)}{(x-a)^n} = 0.$ [HINT: L'Hospital's rule]

The above says that $f(x) - P_{n,f}(x)$ is "of smaller order" than $(x - a)^n$. We'd expect it to be "of order" $(x - a)^{n+1}$. This is indeed the case, under a stronger assumption.

- (c) (A.k.a Taylor's theorem.) Suppose f is n times differentiable at a, and $f^{(n)}$ is continuous at a. Further, suppose there exists $\varepsilon > 0$ such that $f^{(n)}$ is differentiable on $B(a,\varepsilon) \{a\}$. For all $x \in B(a,\varepsilon) \{a\}$, show that there exists ξ between x and a such that $f(x) = P_{n,f}(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$. [HINT: Apply the Cauchy mean value theorem repeatedly to $\frac{f(x)-P_{n,f}(x)}{(x-a)^{n+1}}$.]
- 4. (a) Suppose f is twice differentiable at a, and f attains a local maximum at a, show that f'(a) = 0 and $f''(a) \leq 0$.
 - (b) Give an example of a function that is twice differentiable at a, has f'(a) = f''(a) = 0, however does not attain a local maximum at a.
 - (c) Suppose f is twice differentiable at a, f'(a) = 0 and f''(a) < 0. Show that f attains a local maximum at a.
- 5. (a) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and bijective. Show that f is strictly monotone. [A function is strictly monotone if it is either always strictly increasing, or always strictly decreasing.]
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and bijective, show that f^{-1} is also continuous.
 - (c) (Optional) Hard challenge: Find an example of $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is continuous and bijective such that f^{-1} is NOT continuous.
- 6. (a) Find a function $f : \mathbb{R} \to \mathbb{R}$ which is differentiable and bijective, however f^{-1} is *not* differentiable.
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable, bijective and f' is never 0, then show that f^{-1} is also differentiable.

Assignment 7: Assigned Wed 02/29. Due Wed 03/07

1. Sec. 1.7. 6, 7

- 2. Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ is linear. Show that f is differentiable, and $Df_a(h) = f(h)$. [In other words, the derivative of a linear transformation is itself.]
- 3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable. Show that $Df_a = (f'(a))$. That is, show that the linear transformation Df_a is the 1×1 matrix (f'(a)). [This shows that our notion of derivative for functions depending on more than one variable is a generalization of the one variable definition.]
- 4. Let $f(x,y) = \frac{x^2y}{x^2+y^2}$. We saw in class that all partial derivatives of f exist, but f is not differentiable at 0.
 - (a) Show further that for any $v \in \mathbb{R}^2$, the directional derivative of f in direction v at the point 0 exists. Compute it.
 - (b) Show that $\partial_x f$ and $\partial_y f$ are not continuous.
- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that both $\partial_x f$, $\partial_y f$ exist and are continuous in a neighbourhood of a. Show that f is differentiable at a. [HINT: Note f(x + s, y + t) f(x, y) = f(x + s, y + t) f(x + s, y) + f(x + s, y) f(x, y), and apply the mean value theorem. Generalizing this to functions $f : \mathbb{R}^n \to \mathbb{R}$ is similar.]
- 6. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a, and attains a local maximum at a. Show that Df_a is the 0 linear transformation.
- 7. (Divergence, gradient, curl) This problem defines three vector derivatives are very useful in practice, and asks you to compute a few elementary properties.
 - (a) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a *scalar* function. We define ∇f (read as 'gradient f') by $\nabla f = \sum_{i=1}^n \partial_i f e_i$. Note ∇f is a vector, with i^{th} coordinate $\partial_i f$. Also note that ∇f is the transpose of the Jacobian of f. If $f, g : \mathbb{R}^n \to \mathbb{R}$ are differentiable, show that $\nabla(fg) = f\nabla g + g\nabla f$.
 - (b) Let $u : \mathbb{R}^n \to \mathbb{R}^n$ be a vector function. We define $\nabla \cdot u$ (read as 'divergence u') by $\nabla \cdot u = \sum_{i=1}^n \partial_i u_i$. Note $\nabla \cdot u$ is a scalar, and equals the trace of the Jacobian of u.

If $f : \mathbb{R}^n \to \mathbb{R}$ and $u : \mathbb{R}^n \to \mathbb{R}^n$ are differentiable, show that $\nabla \cdot (fu) = (\nabla f) \cdot u + f(\nabla \cdot u)$.

- (c) Let $u : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector function. We define $\nabla \times u$ (read as 'curl u') by $\nabla \times u = \begin{pmatrix} \partial_2 u_3 - \partial_3 u_2 \\ \partial_3 u_1 - \partial_1 u_3 \\ \partial_1 u_2 - \partial_2 u_1 \end{pmatrix}$. Note that $\nabla \times u$ is a 3-dimensional vector. If $f : \mathbb{R}^3 \to \mathbb{R}$ and $u : \mathbb{R}^3 \to \mathbb{R}^3$ are differentiable, show that $\nabla \times (fu) = f(\nabla \times u) + (\nabla f) \times u$.
- (d) Suppose $u, v : \mathbb{R}^3 \to \mathbb{R}^3$ are differentiable. Show that $\nabla \cdot (u \times v) = v \cdot (\nabla \times u) u \cdot (\nabla \times v)$.