
Assignment 6: Assigned Wed 02/22. Due Wed 02/29

1. Sec. 1.6. 7. [Warning: The intermediate value theorem does NOT apply to f ′, as f ′ need

not be continuous.]

2. Suppose two (oddly shaped) pancakes are placed on a table. Show that with
one straight cut of a knife you can cut both of them in half simultaneously. [It

turns out that if you place three, oddly shaped, burgers in R3, you can always cut each of

them in half with one straight cut of a knife. This however requires some algebraic topology

to prove. . . ]

3. If f is differentiable at a, then we know that f(x) ≈ f(a) + (x − a)f ′(a). The
function f(a) + (x− a)f ′(a) is a “first order” approximation of f . The point of
this question is to find higher order approximations of f , provided the higher
order derivatives of f exist.

Let a ∈ R be fixed, and define Pn,f , the nth Taylor approximation of f to be

the polynomial Pn,f (x) =
∑n
k=0

f(k)(a)
k! (x− a)k.

(a) For n > 1, show that P ′n,f (x) = Pn−1,f ′(x).

(b) (Taylor’s theorem.) Suppose f is n times differentiable at a. Show that

lim
x→a

f(x)−Pn,f (x)
(x−a)n = 0. [Hint: L’Hospital’s rule]

The above says that f(x) − Pn,f (x) is “of smaller order” than (x − a)n. We’d
expect it to be “of order” (x− a)n+1. This is indeed the case, under a stronger
assumption.

(c) (A.k.a Taylor’s theorem.) Suppose f is n times differentiable at a, and f (n)

is continuous at a. Further, suppose there exists ε > 0 such that f (n) is
differentiable on B(a, ε) − {a}. For all x ∈ B(a, ε) − {a}, show that there

exists ξ between x and a such that f(x) = Pn,f (x) + f(n+1)(ξ)
(n+1)! (x − a)n+1.

[Hint: Apply the Cauchy mean value theorem repeatedly to
f(x)−Pn,f (x)

(x−a)n+1 .]

4. (a) Suppose f is twice differentiable at a, and f attains a local maximum at a,
show that f ′(a) = 0 and f ′′(a) 6 0.

(b) Give an example of a function that is twice differentiable at a, has f ′(a) =
f ′′(a) = 0, however does not attain a local maximum at a.

(c) Suppose f is twice differentiable at a, f ′(a) = 0 and f ′′(a) < 0. Show that
f attains a local maximum at a.

5. (a) Suppose f : R → R is continuous and bijective. Show that f is strictly
monotone. [A function is strictly monotone if it is either always strictly increasing, or

always strictly decreasing.]

(b) If f : R→ R is continuous and bijective, show that f−1 is also continuous.

(c) (Optional) Hard challenge: Find an example of f : R2 → R2 which is
continuous and bijective such that f−1 is NOT continuous.

6. (a) Find a function f : R → R which is differentiable and bijective, however
f−1 is not differentiable.

(b) If f : R → R is differentiable, bijective and f ′ is never 0, then show that
f−1 is also differentiable.
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2. Suppose f : Rm → Rn is linear. Show that f is differentiable, and Dfa(h) =
f(h). [In other words, the derivative of a linear transformation is itself.]

3. Suppose f : R → R is differentiable. Show that Dfa = (f ′(a)). That is, show
that the linear transformation Dfa is the 1 × 1 matrix (f ′(a)). [This shows that

our notion of derivative for functions depending on more than one variable is a generalization

of the one variable definition.]

4. Let f(x, y) = x2y
x2+y2 . We saw in class that all partial derivatives of f exist, but

f is not differentiable at 0.

(a) Show further that for any v ∈ R2, the directional derivative of f in direction
v at the point 0 exists. Compute it.

(b) Show that ∂xf and ∂yf are not continuous.

5. Let f : R2 → R be such that both ∂xf , ∂yf exist and are continuous in a
neighbourhood of a. Show that f is differentiable at a. [Hint: Note f(x + s, y +

t) − f(x, y) = f(x + s, y + t) − f(x + s, y) + f(x + s, y) − f(x, y), and apply the mean value

theorem. Generalizing this to functions f : Rn → R is similar.]

6. Suppose f : Rn → R is differentiable at a, and attains a local maximum at a.
Show that Dfa is the 0 linear transformation.

7. (Divergence, gradient, curl) This problem defines three vector derivatives are
very useful in practice, and asks you to compute a few elementary properties.

(a) Let f : Rn → R be a scalar function. We define ∇f (read as ‘gradient f’)
by ∇f =

∑n
i=1 ∂ifei. Note ∇f is a vector, with ith coordinate ∂if . Also

note that ∇f is the transpose of the Jacobian of f .

If f, g : Rn → R are differentiable, show that ∇(fg) = f∇g + g∇f .

(b) Let u : Rn → Rn be a vector function. We define ∇ ·u (read as ‘divergence
u’) by ∇ ·u =

∑n
i=1 ∂iui. Note ∇ ·u is a scalar, and equals the trace of the

Jacobian of u.

If f : Rn → R and u : Rn → Rn are differentiable, show that ∇ · (fu) =
(∇f) · u+ f(∇ · u).

(c) Let u : R3 → R3 be a vector function. We define ∇× u (read as ‘curl u’)

by ∇× u =
( ∂2u3−∂3u2

∂3u1−∂1u3

∂1u2−∂2u1

)
. Note that ∇× u is a 3-dimensional vector.

If f : R3 → R and u : R3 → R3 are differentiable, show that ∇ × (fu) =
f(∇× u) + (∇f)× u.

(d) Suppose u, v : R3 → R3 are differentiable. Show that ∇ · (u× v) = v · (∇×
u)− u · (∇× v).
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