Assignment 6: Assigned Wed 02/22. Due Wed 02/29

1. Sec. 1.6. 7. [WARNING: The intermediate value theorem does NOT apply to f^{\prime}, as f^{\prime} need not be continuous.]
2. Suppose two (oddly shaped) pancakes are placed on a table. Show that with one straight cut of a knife you can cut both of them in half simultaneously. [It turns out that if you place three, oddly shaped, burgers in \mathbb{R}^{3}, you can always cut each of them in half with one straight cut of a knife. This however requires some algebraic topology to prove...]
3. If f is differentiable at a, then we know that $f(x) \approx f(a)+(x-a) f^{\prime}(a)$. The function $f(a)+(x-a) f^{\prime}(a)$ is a "first order" approximation of f. The point of this question is to find higher order approximations of f, provided the higher order derivatives of f exist.
Let $a \in \mathbb{R}$ be fixed, and define $P_{n, f}$, the $n^{\text {th }}$ Taylor approximation of f to be the polynomial $P_{n, f}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$.
(a) For $n \geqslant 1$, show that $P_{n, f}^{\prime}(x)=P_{n-1, f^{\prime}}(x)$.
(b) (Taylor's theorem.) Suppose f is n times differentiable at a. Show that $\lim _{x \rightarrow a} \frac{f(x)-P_{n, f}(x)}{(x-a)^{n}}=0$. [HINT: L'Hospital's rule]
The above says that $f(x)-P_{n, f}(x)$ is "of smaller order" than $(x-a)^{n}$. We'd expect it to be "of order" $(x-a)^{n+1}$. This is indeed the case, under a stronger assumption.
(c) (A.k.a Taylor's theorem.) Suppose f is n times differentiable at a, and $f^{(n)}$ is continuous at a. Further, suppose there exists $\varepsilon>0$ such that $f^{(n)}$ is differentiable on $B(a, \varepsilon)-\{a\}$. For all $x \in B(a, \varepsilon)-\{a\}$, show that there exists ξ between x and a such that $f(x)=P_{n, f}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$. [Hint: Apply the Cauchy mean value theorem repeatedly to $\frac{f(x)-P_{n, f}(x)}{(x-a)^{n+1}}$.]
4. (a) Suppose f is twice differentiable at a, and f attains a local maximum at a, show that $f^{\prime}(a)=0$ and $f^{\prime \prime}(a) \leqslant 0$.
(b) Give an example of a function that is twice differentiable at a, has $f^{\prime}(a)=$ $f^{\prime \prime}(a)=0$, however does not attain a local maximum at a.
(c) Suppose f is twice differentiable at $a, f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Show that f attains a local maximum at a.
5. (a) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and bijective. Show that f is strictly monotone. [A function is strictly monotone if it is either always strictly increasing, or always strictly decreasing.]
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and bijective, show that f^{-1} is also continuous.
(c) (Optional) Hard challenge: Find an example of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is continuous and bijective such that f^{-1} is NOT continuous.
6. (a) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable and bijective, however f^{-1} is not differentiable.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, bijective and f^{\prime} is never 0 , then show that f^{-1} is also differentiable.

Assignment 7: Assigned Wed 02/29. Due Wed 03/07

1. Sec. 1.7. 6, 7
2. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear. Show that f is differentiable, and $D f_{a}(h)=$ $f(h)$. [In other words, the derivative of a linear transformation is itself.]
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Show that $D f_{a}=\left(f^{\prime}(a)\right)$. That is, show that the linear transformation $D f_{a}$ is the 1×1 matrix $\left(f^{\prime}(a)\right)$. [This shows that our notion of derivative for functions depending on more than one variable is a generalization of the one variable definition.]
4. Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$. We saw in class that all partial derivatives of f exist, but f is not differentiable at 0 .
(a) Show further that for any $v \in \mathbb{R}^{2}$, the directional derivative of f in direction v at the point 0 exists. Compute it.
(b) Show that $\partial_{x} f$ and $\partial_{y} f$ are not continuous.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that both $\partial_{x} f, \partial_{y} f$ exist and are continuous in a neighbourhood of a. Show that f is differentiable at a. [Hint: Note $f(x+s, y+$ $t)-f(x, y)=f(x+s, y+t)-f(x+s, y)+f(x+s, y)-f(x, y)$, and apply the mean value theorem. Generalizing this to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is similar.]
6. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a, and attains a local maximum at a. Show that $D f_{a}$ is the 0 linear transformation.
7. (Divergence, gradient, curl) This problem defines three vector derivatives are very useful in practice, and asks you to compute a few elementary properties.
(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar function. We define ∇f (read as 'gradient f') by $\nabla f=\sum_{i=1}^{n} \partial_{i} f e_{i}$. Note ∇f is a vector, with $i^{\text {th }}$ coordinate $\partial_{i} f$. Also note that ∇f is the transpose of the Jacobian of f.
If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable, show that $\nabla(f g)=f \nabla g+g \nabla f$.
(b) Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector function. We define $\nabla \cdot u(\mathrm{read}$ as 'divergence $\left.u^{\prime}\right)$ by $\nabla \cdot u=\sum_{i=1}^{n} \partial_{i} u_{i}$. Note $\nabla \cdot u$ is a scalar, and equals the trace of the Jacobian of u.
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are differentiable, show that $\nabla \cdot(f u)=$ $(\nabla f) \cdot u+f(\nabla \cdot u)$.
(c) Let $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector function. We define $\nabla \times u($ read as 'curl u') by $\nabla \times u=\left(\begin{array}{l}\partial_{2} u_{3}-\partial_{3} u_{2} \\ \partial_{3} u_{1}-\partial_{1} u_{3} \\ \partial_{1} u_{2}-\partial_{2} u_{1}\end{array}\right)$. Note that $\nabla \times u$ is a 3 -dimensional vector.
If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are differentiable, show that $\nabla \times(f u)=$ $f(\nabla \times u)+(\nabla f) \times u$.
(d) Suppose $u, v: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are differentiable. Show that $\nabla \cdot(u \times v)=v \cdot(\nabla \times$ $u)-u \cdot(\nabla \times v)$.
